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Introduction


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


– Many brain functions are mediated by parallel distributed networks. For 
instance, language relies on efficient information transmission along long 
range fiber pathways connecting distant cortical areas. See Catani’s work.


– Diffusion tensor imaging (DTI) provides information on white matter tract 
orientation. => tractography to examine brain structural connectivity


– DTI is a non invasive way of understanding brain structural connectivity


– White matter ultrastructural integrity


– Diffusion Imaging has been first developed to measure anisotropic 
diffusion=>ADC.  Clinical applications = Stroke and tumors


– DTI derived measurements: Fractional anisotropy (FA) altered in disease with 
motor control impairment


– Research applications in healthy brain, ageing, neurologic and psychiatric
disorders


Le Bihan D, et al.. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986; 161:401–407. 


Basser, Mattiello, LeBihan. MR Diffusion Tensor Spectroscopy and Imaging. Biophysical Journal. 1994


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Aims


–basic principles of Diffusion Weighted Imaging (DWI)


–Diffusion Tensor Imaging (DTI)


– Diffusion coefficients


– Tractography approaches


9/27/2015 2nd Brain Connectivity Course Grenoble 2015
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Diffusion


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Diffusion is based on Brownian water molecule motions 
Random thermal motion (thermal shocks)


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Poupon JIRFNI 2009


Diffusion


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Free diffusion (ventricules) versus  restricted diffusion (cell wall)


– WATER protons = signal 


– Diffusion property of water molecules (D)


– Diffusion (D)


– Apparent Diffusion coefficient(ADC)


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Poupon JIRFNI 2009
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Anisotropy


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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DWI sequence - Pulsed Gradient Spin-echo (EPI) 


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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Basic DWI Calculation: b


• The b-value gives the degree of diffusion 
weighting and is related to the strength and 
duration of the pulse gradient as well as the 
interval between the gradients


• Areas where diffusion occurs most rapidly will 
exhibit a greater decrease in MR signal as the 
b-value increases


• Collect multiple images each with a different 
b-value. Typically just 2 b-values (0 and 1000)


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


b-value


ln(S)


    ADCbSS  0lnln











Introduction Diffusion DTI DTI Coefficients Tractography Applications


What is b?


• b-value gives the degree of diffusion weighting and is related
to the strength and duration of the pulse gradient as well as
the interval between the gradients


• b changes by lengthening the separation of the 2 gradient
pulses => more time for water molecules to move around


=> more signal loss (imperfect rephasing)


• G= gradient amplitude


• δ = duration


• = trailing to leading edge separation


9/27/2015 2nd Brain Connectivity Course Grenoble 2015
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Diffusion Weighted Imaging (DWI) Sequence


–This loss of signal creates darker voxels (volumetric pixels). 
– Diffusion is measured by repeating the process of diffusion 


Weighting in multiple directions to model the DTI.
– In clinical imaging, ADC maps may be measured using only 3 


diffusion gradients +a b0 map are  required to compute an ADC 
map


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Dwi axial slices


d1 d2 d3 b0


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Apparent Diffusion Coefficient (ADC)


– The simplest and possibly most useful 
scalar for clinical applications is the 
apparent diffusion coefficient (ADC). 


– In clinical imaging ADC maps may be 
measured using only 3 diffusion gradients.


– ADC map:


• high ADC = less barriers 
• low ADC = more barriers


• Areas with higher rate of diffusion are 
brighter 
• Little contrast between gray and white 


matter


9/27/2015 2nd Brain Connectivity Course Grenoble 2015
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• ADC map = Dark regions= water diffusing slower = more obstacles to movement/increased 
viscosity


• Diffusion Weighted Imaging (DWI): Bright regions = decreased water diffusion in case of cytotoxic 
edema


• Intensity of pixels proportional to extent of diffusion


• DWI is useful clinically : diagnosis of acute stroke => thrombolysis <3h


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Water diffusion in brain tissue


Depends upon the environment:


- Proportion of intracellular vs 
extracellular water: cytotoxic oedema in 
stroke vs vasogenic edema in tumor


=>ADC


- Physical orientation of tissue e.g. nerve  
fibre direction


=>DTI


9/27/2015 2nd Brain Connectivity Course Grenoble 2015
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DIFFUSION TENSOR IMAGING


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Diffusion Tensor Imaging (DTI)


• DTI is a technique in which contrast is 
based on both rate and direction in the 
diffusion of water molecules: the areas 
with restricted diffusion will have a 
directional bias which is used to 
determine the direction of diffusion


9/27/2015 2nd Brain Connectivity Course Grenoble 2015
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Types of Isotropy


AnisotropicIsotropic


O’Donnell and Westin, 2011


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


DTI is based on anisotropy 
properties


In gray matter, diffusion is 
isotropic (similar in all 
directions) = A


In white matter, diffusion is 
anisotropic (prefers motion 
along fibers) =B


Diffusion Tensor Imaging (DTI)


• Because the cellular diffusion of water in 
the brain is limited by cell geometry, in 
particular axons, DTI can be used to 
examine the structure of white matter


DTI can measure 


- the direction of motion


- both the velocity and preferred direction 
of diffusion


9/27/2015 2nd Brain Connectivity Course Grenoble 2015
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Diffusion Tensor Imaging


• Technique: Repeat the DWI sequence with gradients applied in a number of different 
directions. From the contribution of all the different directions we can calculate the 
direction of diffusion as well as the relative rate of diffusion


• To create a tensor, we need to collect multiple directions.


• At least 6 directions.


• More directions offer a better estimate of optimal tensor.


• More gradient directions improve reliability (Wang 2012)


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


6 Directions 12 Directions 30 Directions


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Jellison B J et al. AJNR Am J Neuroradiol 2004;25:356-369


©2004 by American Society of Neuroradiology


The diffusion tensor


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients
Tractography


Applications


The diffusion tensor (DT) describes the displacements of the water molecules using 
the covariance matrix of a 3 dimensional Gaussian distribution model
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The Tensor Matrix


• Direction of the principles axes = Eigenvector


• Size of the principles axes = Eigenvalue = λ1, λ2 and λ3 


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients
Tractography


Applications


λ1 indicates the value of maximum diffusivity or primary 
eigenvalue . λ1  is termed axial diffusivity.


λ2 and λ3 , termed radial diffusivity, represent  the 
magnitude of diffusion in a plane transverse to the 
primary one


DTI


• Eigenvalues of the diffusion tensor (lx, ly, and lz) provides length of the ellipsoid 
in the three principal directions of diffusivity


• Eigenvectors provide information about the direction of diffusion


• The eigenvector corresponding to the largest eigenvalue is used as the main 
direction of diffusion 


• Several measures of anisotropy can be computed from the eigenvalues and 
eigenvectors


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


x


y


zλ1


λ2


λ3



http://ovidsp.tx.ovid.com/spa/ovidweb.cgi?View+Image=00041327-200603000-00012|MM3&S=JGFIFPFGHDDDFFCMNCGLCCJLJDKJAA00&WebLinkReturn=Full+Text=L|S.sh.45.47|0|00041327-200603000-00012

http://ovidsp.tx.ovid.com/spa/ovidweb.cgi?View+Image=00041327-200603000-00012|MM3&S=JGFIFPFGHDDDFFCMNCGLCCJLJDKJAA00&WebLinkReturn=Full+Text=L|S.sh.45.47|0|00041327-200603000-00012
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Measures of Diffusion anisotropy


x


y


zλ1


λ2


λ3


http://pubs.niaaa.nih.gov/publications/arh27-2/146-152.htm


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD)
and fractional anisotropy (FA) can be computed from the 3 eigenvalues. 


Indices of Anisotropic Diffusion
• Fractional anisotropy (FA) is a difference between 


eigenvalues and reflects directional diffusion


9/27/2015


2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


l1+ l2 + l3


3


FA is the most reliable scalar


• Mean diffusivity is an addition of eigenvalues  
reflecting overall diffusion


MD =
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FA
A= MD


AA


B= FA
C= Principle Tensor 


Vector


Measure of degree of anisotropy regardless of direction


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Λ2 and  λ3 


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Colour FA map


• Colour coding of the diffusion data 
according to the principal direction 
of diffusion:
 red - transverse axis  (x-axis)


 blue – superior-inferior (z -axis)


 green – anterior-posterior axis (y-axis)


• Brightness of the colour is 
proportional to the FA : Brighter 
areas correspond to areas with 
higher degree of anisotropic 
diffusion


• Ranges from 0 – 1 where FA=1 
corresponds to completely 
anisotropic


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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Axial and 
Radial 
Diffusivity


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Tractography


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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Jellison B J et al. AJNR Am J Neuroradiol 2004;25:356-369


©2004 by American Society of Neuroradiology


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Anatomy


TractographyFA map


Cingulum (1) arching over the corpus callosum (2) Gross dissection


DTI


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Jellison B J et al. AJNR Am J Neuroradiol 2004;25:356-369


©2004 by American Society of Neuroradiology


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


3- Corticospinal 
tract (CST) 


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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4- The arcuate fasciculus/ 
Superior longitudinal tract
5- Inferior longitudinal tract
6- Uncinate fasciculus


language & aphasia


Tractography reconstruction of the white matter


pathways involved in the most frequent


neurodegenerative disorders, some of which 
affect


language function


Catani, c o r t e x 4 4 ( 2 0 0 8 ) 9 5 3 – 9 6 1.


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Tractography - Overview


Voxels are connected based upon similarities in the maximum 
diffusion direction


Not a measure of individual axons, rather the data extracted 
from the imaging data is used to infer where fibre tracts are.


Johansen-Berg  et al.
Ann Rev. Neurosci 32:75-94 (2009) 


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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Degree of anisotropy Deterministic tractography Probabilistic tractography


Nucifora et al. Radiology 245:2 
(2007) 


Degree of anisotropy Streamline tractography Tract density = voxel probability


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Tractography – 2 approaches


Corticospinal Tract


Nucifora et al. Radiology 245:2 
(2007) 


Corticospinal Tract -ProbabilisticCorticospinal Tract -
Deterministic 


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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Deterministic tractography


• Connects neighbouring voxels from user defined voxels
(SEED REGIONS) e.g. M1 for the CST


• User can define regions to restrict the output of a tract e.g. 
internal capsule for the CST


• Tracts are traced until termination criteria are met (e.g. 
anisotropy drops below a certain level or there is an abrupt 
angulation)


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Internal capsule, axial view.A and B, Illustration (A) and directional map (B). 


Jellison B J et al. AJNR Am J Neuroradiol 2004;25:356-369


©2004 by American Society of Neuroradiology


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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The major eigenvector may not be aligned 
with a fiber tract in the case of crossing fibers


O’Donnell and Westin, 2011


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Crossing - kissing fibres


Crossing fibres ? Kissing fibres ?


Low FA within the voxels of intersection (the 
eigenvalue of the principal vector is reduced) 


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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Crossing - kissing fibres


Crossing fibres Kissing fibres


Low FA within the voxels of intersection (the 
eigenvalue of the principal vector is reduced) 


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Crossing or kissing fibers ?


Assaf et al
J Mol Neurosci 34(1) 51-61 (2008)


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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O’Donnell and Westin, 2011


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


False negative


O’Donnell and Westin, 2011


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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Limitations


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Grey matter


U fibers


Short cortical association pathway


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Probabilistic tractography


• Value of each voxel in the map = the probability 
the voxel is included in the diffusion path between 
the ROIs


• Run streamlines for each voxel in the seed ROI


• Provides quantitative probability of connection at 
each voxel 


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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Probabilistic tractography


Robust to noise and partial volume effect => allows tracking into 
regions where there is low anisotropy e.g. crossing or kissing 
fibres


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


DTI - Tractographie


Deterministic tractography Probabilistic tractography


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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Probabilistic tractography limitations


•Time consuming
•Crossing fiber problem remains an issue
• False positive
•Low reliability for the main tracts compared to 
deterministic approach
• Needs a minimum of 30 directions
=> More directions (256), higher resolution (1 
mm3), more time
=> Multiband
=> Other algorithms


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Evolution of the DWI glyph 
High order models to solve the crossing fiber issue using more 
than one direction at the voxel level


a–d: (Kindlmann et al., 2004), e: (Tuch et al., 2002), f: (Tuch, 2004), g: (Prčkovska et al., 
2011).


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications
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HARDI fiber-tracking


DTI HARDI


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


O’Donnell and Westin, 2011


9/27/2015 2nd Brain Connectivity Course Grenoble 2015
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Fig. 3   Diffusion imaging for neuronal fiber track display accelerated with simultaneous image acquisition. The 3D images show neuronal axon 
fiber tracks in the human brain, in vivo, using simultaneous image refocused (SIR) EPI with either 2 or 3 images per...


David A.  Feinberg , Kawin  Setsompop


Ultra-fast MRI of the human brain with simultaneous multi-slice imaging


Journal of Magnetic Resonance, Volume 229, 2013, 90 - 100


http://dx.doi.org/10.1016/j.jmr.2013.02.002


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


DTI = imagerie du 
tenseur de diffusion


cp= cerebral peduncle
pyr= pyramidal tract
ic = internal capsule 


9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Introduction Diffusion DTI DTI Coefficients Tractography Applications


The dataset was reconstructed using least squares tensor estimation (DTI). Evan Calabrese A postmortem brainstem from a 37-year-old male with no neurologic history was 
immersion fixed in 10% formalin doped with 5 mM gadoteridol. MR imaging was performed on a 7T system using a 65 mm internal diameter quadrature RF coil. Diffusion data 
were acquired at 200 μm isotropic resolution using a 3D spin echo pulse sequence (TR/TE = 100/24 ms) with 120 diffusion directions (b = 4000 s/mm2) and 12 non-diffusion 
weighted images (b0) distributed over a ~227 hr acquisition. Bore temperature was controlled with a water circulation system and monitored using a fiberoptic probe. The dataset 
was reconstructed using three different models: 1) least squares tensor estimation (DTI)6, spherical harmonic orientation distribution function (ODF) deconvolution (q-ball)7, and 
FSL’s BEDPOSTX8. Deterministic tractography and tract segmentations were performed on q-ball ODF data using DSI Studio. Probabilistic tractography was carried out using FSL’s 
PROBTRACKX.
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9/27/2015 2nd Brain Connectivity Course Grenoble 2015


Both the microstructural and macrostructural 
organization of white matter pathways 
differentially contributes to understand  brain 
network organization


Introduction Diffusion DTI DTI Coefficients Tractography Applications


Second Brain Connectivity Course 
Grenoble 2015


Sponsors
- SFR1 (MRI- A Krainik)


- SFR3 (Stendhal University)


- FLI : France Life Imaging


- GrenobleAlpes Metropole


- GIN: Grenoble Institute Neuroscience


http://brain-connect.sciencesconf.org
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Clinical applications of Diffusion Imaging 
using Diffusionist toobox


Assia Jaillard


Félix Renard; Coline Huber


Hermes PHRC 
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DTI parameters


• Fiber count


• Tract Volume


• Measures of Diffusion anisotropy
• FA


• Mean diffusivity


• Axial and radial diffusivity


9/24/2015 Second Brain Connectivity Course Grenoble 2
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Diffusion parameters 


1. ROIs


2. Tractography: manual tracking


3. Atlas for the whole brain or specified tracts (arcuate fasciculus or 
CST) 


9/24/2015 Second Brain Connectivity Course Grenoble 3


Representation of CSTs at the pontine level (z= 22mm) on the FA 


template (A); In a control subject (B); In a patient with partial CST 


damage (C) and in a patient with severe CST damage (D).


White matter atlases


1. In the ICBM-DTI-81 white-matter labels atlas provided 
by Susumu Mori, 50 white matter tract labels were 
created by hand segmentation of a standard-space 
average of diffusion probabilistic tensor maps from 81 
subjects; mean age 39 (18:59), M:42, F: 39. The diffusion 
data was provided by the ICBM DTI workgroup. 
http://www.loni.usc.edu/ICBM/Downloads/Downloads_
DTI-81.shtml


2. Natbrainlab: Catani atlas and tract maps: 
http://www.natbrainlab.co.uk/#!atlas-maps/ch5f


The atlases are in MRIcron templates


9/24/2015 Second Brain Connectivity Course Grenoble 4



http://www.loni.usc.edu/ICBM/Downloads/Downloads_DTI-81.shtml

http://www.natbrainlab.co.uk/#!atlas-maps/ch5f
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Comparison of CST FA values based 
on tractography and JHU ROIs in 
healthy participants


9/24/2015 Second Brain Connectivity Course Grenoble 5


Comparison of CST FA values based on tractography and JHU 
ROIs in left and right hemispheres of 30 healthy participants 


- Strong correlation between the FA values provided using  the JHU and 
tractography methods: r= 0,729; p< 0.001. Same for ROIs and JHU FA.


- Effect of the section  of the tract (p=00,002) and trend for the side (p 
=0,059) but without interaction


- No effect of age or sex.


9/24/2015 Second Brain Connectivity Course Grenoble 6
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Reliability: 
Why do we care ?


Factors influencing reliability


• Scanner: magnetic field, SNR, signal drift, 


• Sequence: Number of directions, b value, 
resolution


• Participant: head motions, head orientation


• Preprocessing: artifact correction and 
registration (lesion)


• DTI Processing 


• Anatomical tracts (masks)


• Statistical analysis


- For longitudinal studies


- For multisite studies


- For intervention 
assessment


9/24/2015 Second Brain Connectivity Course Grenoble 7


Mean FA CST values in 30 healthy 
subjects based on the JHU atlas


30 healthy right handed participants


10 females / 20 males (35,4 years ±13,6)


9/24/2015 Second Brain Connectivity Course Grenoble 8


CST section Mean FA SD


Corona radiata 0,4923 0,0365


PLIC 0,6706 0,0222


Mesencephalon 0,6566 0,0336


Mid pons 0,5756 0,0590


Mean CST 0,5988 0,0819


Reproducibility of FA CST values in 
10 healthy subjects (test-retest)


CST section ICC P value 95%CI


Corona radiata 0,984 <0,001 0,93-0,99


PLIC 0,755 0,029 0-0,94


Mesencephalon 0,90 0,027 0,60-0,97


Mid pons 0,56 0,129 0-0,78


Mean CST 0,572 0,038 0-0,831


Left Sections: ICC(1,1) absolute agreement; average measures


mean CST: ICC(2,1) absolute agreement; average measures/


4 females / 6 males (35,2 years ±12,7)


Hermes Data 


• 30 healthy right handed participants


• 10 females / 20 males (35,4 years ±13,6)


Shrout and Fleiss (1979) and McGraw and Wong (1996) are the key reference for 


this document.
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Clinical application: stroke


• Multimodal study


• FA and DTI parameters as biomarkers of stroke recovery


• Lesion volume


• Motor related activation using fmri


• New treatment evaluation


9/24/2015 Second Brain Connectivity Course Grenoble 10


ISIS- HERMES = Intravenous mesenchymal stem cells in subacute 
Stroke (PHRC 2007; PHRC 2010)


27/09/2015 11
Chopp, Lancet Neurol 2002


Detante,  Cell Transplant 2009
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NIHSS at 1 month (severity )


27/09/2015 12


NIHSS at 6 months (predictor)


Lesional volume – T1 –


T1 anatomic
image


one month post-
infarction


Activation at 1 month in the M1 of the lesioned 
hemisphere predicts motor recovery


9/24/2015 Second Brain Connectivity Course Grenoble 13
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DTI => Corticospinal tract (CST)


27/09/2015
14


Midbrain FA is correlated to motor performance and recovery


27/09/2015 15
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FA and radial diffusivity in the cerebral peduncles=> 
demyelinisation in the healthy hemisphere


Corrélation 


de Pearson


Sig. 


(bilatérale)


N Corrélation 


de Pearson


Sig. 


(bilatérale)


N


FMG Moteur total at inclusion ,336 ,117 23 FMG Moteur total at inclusion -,757
** ,000 23


FMG Moteur total at 6 months ,473
* ,041 19 FMG Moteur total at 6 months -,853


** ,000 19


FMG Moteur total at 2years ,696 ,055 8 FMG Moteur total at 2years -,910
** ,002 8


heldtardieu.1 ,309 ,173 21 heldtardieu.1 -,026 ,911 21


heldtardieu.2 -,091 ,739 16 heldtardieu.2 ,309 ,245 16


heldtardieu.3 -,598 ,156 7 heldtardieu.3 ,710 ,074 7


PASS.1 ,628
** ,001 23 PASS.1 -,749


** ,000 23


PASS.2 ,775
** ,000 19 PASS.2 -,632


** ,004 19


PASS.3 ,675 ,096 7 PASS.3 -,797
* ,032 7


FMGtot.1 ,037 ,891 16 FMGtot.1 -,827
** ,000 16


FMGtot.2 ,303 ,253 16 FMGtot.2 -,786
** ,000 16


FMGtot.3 ,750 ,052 7 FMGtot.3 -,780
* ,039 7


NIHSS at inclusion -,534
** ,009 23 NIHSS at inclusion ,680


** ,000 23


nihss at V3 -,645
** ,001 23 nihss at V3 ,657


** ,001 23


nihss at V4 -,694
** ,000 21 nihss at V4 ,799


** ,000 21


NIHSS at 6 months -,704
** ,001 18 NIHSS at 6 months ,719


** ,001 18


Barthel at inclusion ,426
* ,048 22 Barthel at inclusion -,639


** ,001 22


Barthel at 6 month ,654
** ,002 20 Barthel at 6 month -,690


** ,001 20


diffusion radiale  CST2 contralesionnel  InclusionFA CST3 contralesionnel   Inclusion
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Cortico reticulospinal tract


9/24/2015 Second Brain Connectivity Course Grenoble 17


Mean CRT & CST volume in the non lesioned hemisphere of stroke patients (Hermes study).
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Second Brain 
Connectivity Course 
Grenoble 2015


Sponsors
- SFR1 (MRI- A Krainik)
- SFR3 (Stendhal University)
- FLI : France Life Imaging
- GrenobleAlpes Metropole
- GIN: Grenoble Institute Neuroscience


http://brain-connect.sciencesconf.org


Next:


Diffusionist demo
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Diffusion-MRI processing
for group analysis


● Why ?


- To search for differences between groups


- To discover potential bio-markers


● How ?


- First-level : subject processing


- Second-level : group processing 


 







Diffusion-MRI processing
for group analysis


● Diffusionnist: 


- Diffusion-MRI processing software


- For normal population and for lesioned pathologies 
(stroke)


- For clinical research (no batch and no lines of code)


- Based on robust softwares (FSL and DTK/TrackVis)


- Works on linux (Ubuntu distribution)







Diffusion-MRI processing
for group analysis







Diffusion-MRI processing
for group analysis


● Diffusionnist the pipeline:







● Diffusionnist the pipeline:


Data Structure: -Multi group and longitudinal design


       -Possibility to analyse single subjects


Diffusion-MRI processing
for group analysis


   Data Structure Subject processing Normalisation  Group processing    Stats







Data Structure


One patient


Global study folder


Hierarchical data structure
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Data Structure


Longitudinal study
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Data Structure


Longitudinal study


Multi-subject study
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Data Structure


Multi-subject study


Multi-group study
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Data Folder


Raw data (PAR/REC or Dicom)
Diffusion Weighted Images (DWI)


Tested on Philips and Siemens


Specific to 
Lesion processing
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● Diffusionnist the pipeline:


Diffusion-MRI processing
for group analysis


● Subject processing: - Motion artifacts & eddy current correction
 
 - Diffusion coefficient estimation
   ex: FA, MD, radial and axial diffusivity
 
 - Tractography estimation
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Subject processing:
Motion artifacts


- Motion artifacts (rotation and translation)
- Correction by affine transformation.


Small rotation


DWI-7 DWI-8 DWI-9 DWI-10 DWI-11 DWI-12
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Subject processing:
Eddy current correction


- Distorsions due to eddy currents.
(caused by fast commutation of the high amplitudes diffusion gradients )
- Correction by affine transformation


[Poupon, 1999] [Mangin, 2001][Anderson, 2001]


Achieved by FSL
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Subject processing:
Diffusion coefficients estimation 


Fractional Anisotropy 
(FA)


Mean Diffusivity
(MD)


Parallel Diffusivity
(D


// 
)


Perpendicular 
Diffusivity


(D
┴ 


)
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Correct automatically
the data (image and gradients table) !


Inspect manually the 
data !


Subject processing:
Diffusion coefficients estimation 


QUALITY CHECK of the DATA !!!
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Subject processing:
Diffusion coefficients estimation 


Fractional Anisotropy 
(FA)


Mean Diffusivity
(MD)


Parallel Diffusivity
(D


// 
)


Perpendicular 
Diffusivity


(D
┴ 


)
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Correct automatically
the gradients table for all images!


Inspect manually the 
data !


Subject processing:
Diffusion coefficients estimation 


CHECK your GRADIENT TABLES !!!
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Subject processing:
Diffusion coefficients estimation 


Fractional Anisotropy 
(FA)


Mean Diffusivity
(MD)


Parallel Diffusivity
(D


// 
)


Perpendicular 
Diffusivity


(D
┴ 


)


   Data Structure Subject processing Normalisation  Group processing    Stats







Possibility to analyse
the results with
TrackVis !


Subject processing:
Tractography estimation 
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● Diffusionnist the pipeline:


Diffusion-MRI processing
for group analysis


● Normalisation: - Linear and non linear registration
     - Registration considering lesions!!!
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Normalisation
Why ?


FA template


FA patients
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Normalisation
How ?


REGISTRATION = estimation of a transformation


● T = rotation, scaling, translation (global deformation)


● D = High order transformation (local deformation)


From Collins,MNI
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Normalisation
Exemple


Source Target
Linear T Non linear


      D


Patient space MNI space
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Registration
     A synthetic exemple with lesion


Without mask With mask


Non linear registration
Linear registration


Without mask With mask


Ground truth
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Without mask With mask


Non linear registration
Linear registration


Without mask With mask


Ground truth


Registration
     A synthetic exemple with lesion
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Without mask With mask


For lesioned brains, masks must be considered!


Non linear registration
Linear registration


Without mask With mask


Ground truth


Registration
     A synthetic exemple with lesion
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Registration


Without mask With mask


For lesioned brains, masks must be considered!
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● Diffusionnist the pipeline:


Diffusion-MRI processing
for group analysis


● Group processing: - TBSS
      - ROI analysis
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Group processing
TBSS


1) Non-linear registration, followed by 


2) projection onto an alignment-invariant tract representation (the 
‘‘mean FA skeleton’)
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Group processing
TBSS


1) Non-linear registration, followed by 


2) projection onto an alignment-invariant tract representation (the 
‘‘mean FA skeleton’)
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Group processing
TBSS with lesion


Correct non linear registration Biased non linear registration
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Group processing
ROI analysis
- the ICBM-DTI-81 white-matter labels atlas


- created by hand segmentation


-  48 white matter tract labels


Exist others atlas


             Ex : natbrainlab


Catani M, Jones DK, Donato R, ffytche DH. Occipito-temporal connections in the human brain. Brain 2003
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Group processing
ROI analysis
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Group processing
ROI analysis


Use the skeleton to avoid partial volume
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Group processing
ROI analysis


- 46 text files (for 46 ROIs) for each group for one coefficient


- Column for times and row for subjects
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● Diffusionnist the pipeline:


Diffusion-MRI processing
for group analysis


● Stats processing: - R,SPSS


   Data Structure Subject processing Normalisation  Group processing    Stats







Stats analysis


● No specific algorithm is provided !


● Lot of softwares available (SPM, SPSS, R, Python, etc...)







Take home message
● All steps are important to have reliable results!


● Need to check all the steps!


● Be careful when process pathological brain imaging!







Questions ?
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Fiber Tracking







Tractography – Introduction


•A primary assumption of many tractography 
algorithms:
the direction of the greatest diffusivity is 
roughly parallel to the local white matter 
fiber bundle direction.


Johansen-Berg  et al. Ann Rev. 
Neurosci 32:75-94 (2009) 







Tractography – Introduction


•A macroscopic representation of the white 
matter


•Not actually a measure of single axon


Johansen-Berg  et al. Ann Rev. 
Neurosci 32:75-94 (2009) 


~ µm ~ mm







  


Outline


1) Tractography algorithms :
-Deterministic tractography
-Probabilistic tractography


2) Limitations


3) Validation







  


Tractography


1) Choice of the diffusion model 
    Ex: DTI, ODF, Qball Imaging ...


2) Choice of the algorithm of tracking:
-Streamline deterministic tractography
-Probabilistic tractography


3) Choice the stopping criterion
    Ex : FA threshold, curvature angle threshold 


Tract algorithms Limitations Validation







  


Streamline deterministic 
tractography for DTI


● Fiber Assignment by Continuous Tracking 
(FACT)


 Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance 
imaging. Ann Neurol. 1999;45(2):265–9.


Tract algorithms Limitations Validation







  


FACT method


● Starting in a seed voxel


Tract algorithms Limitations Validation







  


FACT method


● Starting in a seed voxel


● Step in principal direction 
until voxel edge


Tract algorithms Limitations Validation







  


FACT method


● Starting in a seed voxel


● Step in principal direction 
until voxel edge


• Use tensor from the next 
voxel


• Continue in principal 
direction until the next edge 
(variable step size)


Tract algorithms Limitations Validation







  


FACT method


● Starting in a seed voxel


● Step in principal direction 
until voxel edge


• Use tensor from the next 
voxel


• Continue in principal 
direction until the next edge 
(variable step size)


● Repeat until stopping 
criterion is met.
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FACT method
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● Step in principal direction 
until voxel edge


• Use tensor from the next 
voxel
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direction until the next edge 
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criterion is met.
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FACT method


● Starting in a seed voxel


● Step in principal direction 
until voxel edge


• Use tensor from the next 
voxel


• Continue in principal 
direction until the next edge 
(variable step size)


● Repeat until stopping 
criterion is met.
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FACT method


● Starting in a seed voxel


● Step in principal direction 
until voxel edge


• Use tensor from the next 
voxel


• Continue in principal 
direction until the next edge 
(variable step size)


● Repeat until stopping 
criterion is met.


Tract algorithms Limitations Validation







  


FACT problem 


P. Mukherjee et al. AJNR Am J Neuroradiol 2008;29:632-641


©2008 by American Society of NeuroradiologyTract algorithms Limitations Validation







  


FACT problem 


©2008 by American Society of Neuroradiology


Adapted from P. Mukherjee et al. AJNR Am J Neuroradiol 2008;29:632-641


Tract algorithms Limitations Validation







  


Constant step → Euler's method


Problem →Paths fall between data samples 
Need to interpolate the vector field!


FACT


Tract algorithms Limitations Validation







  


Constant step → Euler's method


Problem →Paths fall between data samples 
Need to interpolate the vector field!


FACT


Tract algorithms Limitations Validation







  


Constant step → Euler's method


Problem →Paths fall between data samples 
Need to interpolate the vector field!


FACT


Tract algorithms Limitations Validation







  


Euler's method


● Start the path in the 
principal direction at a 
seed


● Interpolate a new tensor at 
path endpoint


Tract algorithms Limitations Validation







  


Euler's method


● Start the path in the 
principal direction at a 
seed


● Interpolate a new tensor at 
path endpoint


● Take next step based on 
interpolation
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Euler's method


● Start the path in the 
principal direction at a 
seed


● Interpolate a new tensor at 
path endpoint


● Take next step based on 
interpolation


● Repeat until stopping 
criterion is met.
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Euler's method


● Start the path in the 
principal direction at a 
seed


● Interpolate a new tensor at 
path endpoint


● Take next step based on 
interpolation


● Repeat until stopping 
criterion is met.
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Euler's method


● Start the path in the 
principal direction at a 
seed


● Interpolate a new tensor at 
path endpoint


● Take next step based on 
interpolation


● Repeat until stopping 
criterion is met.
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Euler's method


● Start the path in the 
principal direction at a 
seed


● Interpolate a new tensor at 
path endpoint


● Take next step based on 
interpolation


● Repeat until stopping 
criterion is met.
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Euler's method


● Start the path in the 
principal direction at a 
seed


● Interpolate a new tensor at 
path endpoint


● Take next step based on 
interpolation


● Repeat until stopping 
criterion is met.


Tract algorithms Limitations Validation







  


FACT


● Interpolation : Does it matter ?


Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI 
data. Magn Reson Med. 2000;44(4):625–32.


Tract algorithms Limitations Validation







  


Stopping criterion


● Angle threshold


In general 45°


To avoid U-turn
● FA threshold


In general : FA > 0.2


For pathological case : FA > 0.1


Tract algorithms Limitations Validation







  


Stopping criterion


● FA threshold for normal population


FA FA>0.1 FA>0.2 FA>0.3


Tract algorithms Limitations Validation







  


Stopping criterion


● FA threshold for pathological population 


FA stroke


FA>0.1 FA>0.15 FA>0.2


Tract algorithms Limitations Validation







  


Outline


1) Tractography algorithms :
-Deterministic tractography
-Probabilistic tractography


2) Limitations


3) Validation


Tract algorithms Limitations ValidationTract algorithms Limitations Validation







  


Probabilistic tractography


Perfect world


Tract algorithms Limitations ValidationTract algorithms Limitations Validation







  


Probabilistic tractography


Perfect world


Tract algorithms Limitations ValidationTract algorithms Limitations Validation







  


Probabilistic tractography


Perfect world Real noisy world


Tract algorithms Limitations ValidationTract algorithms Limitations Validation







  


Probabilistic tractography


Perfect life Real noisy world


Tract algorithms Limitations ValidationTract algorithms Limitations Validation







  


A, Errors in the estimation of fiber orientation can be graphically depicted on a voxel-by-voxel 
basis by using, for example, the double-cone diagram, in which the principal eigenvector of a 


diffusion tensor ellipsoid in an image voxel (upper right) is now ...


H.-W. Chung et al. AJNR Am J Neuroradiol 2011;32:3-13


Probabilistic tractography
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Probabilistic 
method


Tract algorithms Limitations ValidationTract algorithms Limitations Validation


● Start the path at a seed







  


Probabilistic 
method


Tract algorithms Limitations ValidationTract algorithms Limitations Validation


● Start the path at a seed


● Select a random angle 
considering the 
uncertainity







  


Probabilistic 
method


Tract algorithms Limitations ValidationTract algorithms Limitations Validation


● Start the path at a seed


● Select a random direction 
considering the 
uncertainity


● Take a step in this direction







  


Probabilistic 
method


Tract algorithms Limitations ValidationTract algorithms Limitations Validation


● Start the path at a seed


● Select a random direction 
considering the 
uncertainity


● Take a step in this direction


● Repeat until stopping 
criterion is met.







  


Probabilistic 
method


Tract algorithms Limitations ValidationTract algorithms Limitations Validation


● Start the path at a seed


● Select a random direction 
considering the 
uncertainity


● Take a step in this direction


● Repeat until stopping 
criterion is met.







  


Probabilistic 
method


Tract algorithms Limitations ValidationTract algorithms Limitations Validation


● Start the path at a seed


● Select a random direction 
considering the 
uncertainity


● Take a step in this direction


● Repeat until stopping 
criterion is met.







  


Probabilistic 
method


Tract algorithms Limitations ValidationTract algorithms Limitations Validation


● Start the path at a seed


● Select a random direction 
considering the 
uncertainity


● Take a step in this direction


● Repeat until stopping 
criterion is met.







  


Probabilistic 
method


Tract algorithms Limitations ValidationTract algorithms Limitations Validation


● Start the path at a seed


● Select a random direction 
considering the 
uncertainity


● Take a step in this direction


● Repeat until stopping 
criterion is met.


● Restart at the seed







  


Probabilistic 
method


Tract algorithms Limitations ValidationTract algorithms Limitations Validation


● Start the path at a seed


● Select a random direction 
considering the 
uncertainity


● Take a step in this direction


● Repeat until stopping 
criterion is met.


● Restart at the seed


● Repeat thousands of times







  


Probabilistic 
method
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Tractography – Techniques 


Model of anisotropy 


Nucifora et al. Radiology 245:2 (2007) 


Probabilistic
tractography


Streamline 
tractography  


Tract algorithms Limitations ValidationTract algorithms Limitations Validation







  


Deterministic vs Probabilistic
Tractography


Deterministic tractography :
● Pros : Simple / Fast / Reliable
● Cons : Crossing fibers / sensitive to noise


Probabilistic tractography :
● Pros : Robust to noise / Deal with crossing fibers
● Cons : Burden computation → time consuming


Tract algorithms Limitations ValidationTract algorithms Limitations Validation







  


Outline


1) Tractography algorithms :
-Deterministic tractography
-Probabilistic tractography


2) Limitations


3) Validation


Tract algorithms Limitations Validation







  


● Crossing fibers


              Limitations 


Tract algorithms Limitations Validation







  


● Crossing fibers


              Limitations 


Problem with DTI model


Tract algorithms Limitations Validation







  


● Crossing fibers


Solution : High order model !


              Limitations 


Problem with DTI model


Tract algorithms Limitations Validation







  


Limitations 


● Crossing fibers


High Order model of the 
direction of propagation of 
the tractography


Campbell and all. Beyond crossing fibers: Bootstrap probabilistic tractography using 
complex subvoxel fiber geometries ,Frontiers in Neurology, 5, 2014      


Confidence intervals


for the main direction


Tract algorithms Limitations Validation







  


Limitations (2)


Crossing Fibers?


Tract algorithms Limitations Validation







  


Limitations (2)


Kissing fibers


Crossing fibers


Tract algorithms Limitations Validation







  


Outline


1) Tractography algorithms :
-Deterministic tractography
-Probabilistic tractography


2) Limitations


3) Validation
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Validation


● FiberCup 


Fig. 1.FiberCup mimicking a coronal slice of the brain with typical short ‘U’ fibers (bundle 4), 
larger ‘U’ fibers mimicking the corpus callosum (bundle 1), left-to-righthemisphere commissural 
projections (bundle 3) and fanning bundles mimicking the corticospinal tract (bundles 2, 5, 6 
and 7).


Côté, M.-A., Girard, G., Boré, A., Garyfallidis, E., Houde, J.-C., and Descoteaux, M. (2013). 
Tractometer: towards validation of tractography pipelines. Med. Image Anal. 17, 844–857. 


Tract algorithms Limitations Validation







  


Validation
● FiberCup : Possibility to compare methods !


Côté, M.-A., Girard, G., Boré, A., Garyfallidis, E., Houde, J.-C., and Descoteaux, M. (2013). 
Tractometer: towards validation of tractography pipelines. Med. Image Anal. 17, 844–857. 


Tract algorithms Limitations Validation







Conclusion


1) Tractography is just a macroscopic 
representation of the fiber bundles


2) Choice of the tracking algorithm depends of the 
study.







Questions ?







  


Constant step → Euler's method


Problem →Paths fall between data samples 
Need to interpolate the vector field!


FACT


Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance 
imaging. Ann Neurol. 1999;45(2):265–9.


Tract algorithms Limitations Validation







  


Fiber selection


ROI 1


ROI 2


ROI 3


ROI1 and ROI2 
not ROI3


ROI1 and ROI2 
and ROI3


ROI1 not ROI2 







  


Branching 
fibers







  


Tensor Deflection : TEND


Derek K Jones. Diffusion MRI, Oxford University Press, 2010.


1) Use the full diffusion tensor 
information


2) Consider the previous 
direction 







  


● Only the problem of interpolation ?


● Problem of integration along the curve ?


FACT







  


FACT


Start point


Real point


Estimated point 
(Euler's method)


Error !







  


FACT


Start point


Real point


Estimated point 
(Euler's method)


Estimated point 
(Runge-Kutta's 
method)


Error !







  


Runge-Kutta 
method







  


Euler's method


Runge-Kutta 
method


FACT method
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Goals


At the end, you will able to :
● Do the basics (Load tracks/image, visualize 


tracks, ...)
● Segment fiber bundles 
● Analyse the different coefficients (FA/MD) on 


this tracks
● Create a density map







  


Trackvis


Track View


Image View


Property
panel


Objects
panel







  


Trackvis (without images view)


Track View


Property
panel


Objects
panel


Double right click to display or
not display the image view







  


Initialisation


● Load images
● Prepare the tracks







  


Load tracks


Select :
File


Open Track or Scene...


Or type :
Ctl+O







  


Load tracks (2)







  


Remove Y-ticks


Double right click on Y
Uncheck the box







  


Remove Y-ticks (2)







  


Threshold the lenght of your tracks


Click on '+' before 
Length threshold







  


Threshold the lenght of your tracks 
(x2)







  


Threshold the lenght of your tracks 
(x3)


Double right click on 0
Set the length to 40 mm







  


Threshold the lenght of your tracks 
(4)







  


Visualisation


● Rotate/Zoom/Translate the tracks
● Reinitialize the view







  


Rotate the tracks : 
Hold right click







  


Zoom the tracks:
Hold left click 







  


Translate the tracks:
Middle scroll







  


Select :
View


Reset the view


Reset the view







  


Reset the view (2)







  


Challenge :  Obtain the same view
perfectly aligned with the X-axis !


Trick : Ctr + R







  


Images


● Load images
● Display the X-axis , Y-axis or Z-axis plane 







  


Load image Click :







  


Load images (2) Select the FA file :







  


Load images (3)







  


Slice display


Uncheck X-ticks
and Z-ticks
to undisplay
the corresponding slices







  


Slice display (2)







  


Slice selection


Select a position
for the Y-axis slice







  


Slice opacity 


Select the opacity
of the slice







  


Slice opacity (x2)







  


Fiber bundle selection (step 1)


● Select a fiber bundle with a sphere ROI
● Modify the position of the sphere (two methods)
● Set the parameters of the sphere (radius)


Starting point
● Reset the view
● Set the slice at (70;75;36) 







  


Starting point (70,75,36)







  


Create Track


Select :
TrackGroup


New Track Group From Sphere







  


Hide the whole track


Left click on Track 1
Select : Hide







  


Hide the whole track (x2)







  


ROI parameters


Select the ROI tab







  


ROI radius


Set the radius to 1.75







  


ROI radius (x2)


Remove some fibers.







  


Move the sphere ROI
(Setting coordinates)


Set the coordinates of the sphere
Ex : (70;80;13)







  


Move the sphere ROI
(Drag the sphere)


Drag the sphere with Right Click 
Ex : (87;80;38)







  


Fiber bundle selection (step 2)
Track the CorticoSpinal Track


● Select a specific fiber bundle with a sphere ROI
● Withdraw some outliers fibers


Starting point
● Set the position of the sphere to (81;77;17)
● Set the radius to 2







  


Starting point







  


How to « clean » the tracks ?







  


Fiber selection


ROI 1


ROI 2


ROI 3


ROI1 and ROI2 
not ROI3


ROI1 and ROI2 
and ROI3


ROI1 not ROI2 







  


Create a second sphere


Left click on Track2
Then select :


Add New ROI Sphere







  


Create a second sphere (x2)


Sphere2







  


Set the position of the Sphere2


Set the coordinates at
(86;94;13)







  


Set the radius of the Sphere2


Set the radius at 6







  


Set the logical status of the Sphere2(x2)


Select the track tab







  


Set the logical status of the Sphere2(x3)


For Sphere2 :
Set 'No part'







  


Set the logical status of the Sphere2(x3)







  


Fiber bundle Statistics


● Select a specific fiber bundle
● Analyse statistics over this bundle


Starting point
● Select a track







  


Start the statistics analysis


Select :
TrackGroup


Statistics...







  


Statistics analysis (histogram)


Track1 = Whole track


Descriptive statistics
Of the track1







  


White matter voxels


Statistics analysis (histogram)







  


Grey matter voxels


Statistics analysis (histogram)







  


Select the track2


Statistics analysis of the selected 
track2 (histogram)







  


Statistics analysis of the selected 
track2 (histogram)







  


Select another parameter
ex : the length


Select the lenght of the tracks







  


Fiber bundle selection (step 3)
Track the Corpus callosum Track


● Select a specific fiber bundle with slices ROI
● Withdraw some outliers fibers


Starting point
● Remove the sphere of the track2
● Reset the view
● Remember to threshold the lenght to 40mm







  


Starting point


Double click on X.
Check the X-ticks.







  


Use a x-slice


Double click on X.
Check the X-ticks







  


Use a z-slice


Double click on Z.
Check the Z-ticks







  


Move the z-slice


Set the Z position 
To 51







  


Remove fibers outliers


Not corresponding to corpus 
callosum.
Need to be cleen !







  


Add a new z-slice


Left click on Slice filters
Add a new Z-slices







  


Move the second z-slice


Set the Z position
To 26







  


Change logical properties of the 
second z-slice


Change the operator of 
the Z-slice to 'Not'







  


Change the operator of 
the Z-slice to 'Not'


Change logical properties of the 
second z-slice (x2)







  


Hide the slices !


Change the Frame of 
All the slices to 'Off'







  


Here a corpus callosum !







  


Density Map


● Create a density map of a whole track
● Create a density map of specific track







  


Create/Save the density map !


Select :
File


Save Density Map...


Here we choose T09a_DM.nii







  


Load the density map !


Load T09a_DM.nii







  


Load the density map !(x2)


You can choose
Between FA and
Density map







  


Density Map seems similar 
to FA map


Load the density map !(x3)







  


Compare the density map and the 
FA map !


Select :
TrackGroup


Statistics...







  


Histogram of the FA map !


Select your image (FA or density 
map) !







  


Histogram of the density map !







  


Create the density map of a specific 
track!


Left click on Track2
Select :


Save As...
Choose the nii format







  


Create the density map of a specific 
track! (x2)


Load the new
density map







  


Create the density map of a specific 
track !


Density Map of the track!







  


Save the works.


● Save a specific track
● Save the scene (track+images+ROI)







  


Save the specific track !


Select :
Track2


Save as...


Choose the trk format







  


Save the scene !


Select :
File


Save scene
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What can we do with graphs?


2


...obtain macroscopic models of complex systems







Why do we care about graph theory?


Describing the brain as a graph has allowed 
tremendous insights into brain function! Brain 
graph topology is related to at least


Healthy subjects: experimental task, cognitive 
performance, sex, age, genetics, drug usage, 


emotional states...


Patients: Alzheimer disease, multiple sclerosis, 
schizophrenia, bipolar disorder, depression, 


fronto-temporal dementia, sleep apnoea, PTSD, 
vegetative states...







Agenda


I Graph Theory (the optimistic part)


Basics


Topological analysis


Communities & Modularity


Multiplex graphs


II Graph Practice (the cautionary part)


Methods issues


Data issues







Part I
GRAPH THEORY







“Brain graphs”
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Labelled graphs
“Brain graphs” can be expressed formally as labelled 
graphs.


Labelled graphs are written:


V: the set of vertices (voxels, ROIs, ICA components, sources...)
E: the set of edges s.t.                       ,             - “edge with end 
vertices vi and vj”. vi and vj are adjacent or neighbors.
α: vertex labelling function (returns a scalar or vector for each vertex)
β: edge labelling function (returns a scalar, or vector for each edge)
weighted graphs: 
unweighted graphs: 
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g = (V,E,�,⇥)


e := {vi, vj} = vivj


� : e 7! R
� : e 7! 1







Adjacency matrices
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In some cases we can also represent V,E,β 
compactly by an adjacency matrix A 2 R|V |⇥|V |


A1,2


A4,3


v1


v2


v3


v4


v1 v2 v3 v4


With the conventions 


Ai,j = 0 i↵ ei,j /2 E


Ai,j := �(i, j)







Example adjacency matrices
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weighted β > 0.6
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A useful restriction
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 Brain graphs obtained from a fixed vertex-to-space mapping 
(e.g. functional or structural atlasing in fMRI) can be modelled 
by graphs with fixed-cardinality vertex sequences1, 
a subclass of Dickinson et al.’s graphs with unique node labels2:


 Fixed number of vertices for all graph instances:


 Fixed ordering of the set (sequence) V:


 Scalar edge labelling functions: 


 (optional) Undirected: 


 2 [Dickinson et al., IJPRAI, 2004]


� : (vi, vj) 7! R


AT = A


1 [Richiardi et al.,  ICPR, 2010]


 This is a very restricted (but still expressive) class of graphs


 This limits the effectiveness of many classical methods for 
comparing general graphs (based on graph matching).


8i |Vi| = R


V = (v1, v2, . . . , vR)







Subgraphs
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We can consider a subset of the vertices 


illustration from  [Jungnickel 2005]


subgraph
spanning subgraph


inducedsubgraph


V 0 = V







Walks, paths, and connectedness
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a b


c
d


e


Walk: edge sequence with 
supporting vertices


e1


e2


e3


e4
Path: walk through unique vertices


(e1,e2,e3,e4): not a walk
(e1,e3,e2,e2,e4): a walk


(e1,e3,e2,e2,e4): not a path
(e1,e3,e4): a path


Connectedness: vi and vj are connected if there is a 
walk starting at vi and ending at vj. If all pairs are 
connected then g is connected.







Topological analysis







Topological analysis
We want to capture qualitative aspects of graph 
organisation


nz = 7036
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dense/sparse? regular/random?


[Watts & Strogatz, Nature, 1998]







Graph “attributes”
Graphs g, h are isomorphic iff there exists a 
permutation matrix P s.t. 
In our case (atlased connectivity graph):


Hence connectivity graphs are isomorphic iff


Graph invariant:  (set of) parameter(s) 
yielding the same value for isomorphic graphs
To compare noisy connectivity graphs we are more 
interested in ε-isomorphism, and ε-invariants*


Some invariants may degenerate depending on |V| : non-
isomorphic graphs may have the same value. Use several 
invariants**.


15
*[Jain & Wysotzki, Neurocomputing, 2005]


** as in chemometrics: [Bonchev et al, J Comput Chemistry 1981]


P
4
= I


Eg = Eh and
�i, j �g(vi, vj) = �h(vi, vj)


PAgP
T = Ah


Eg = Eh







Topological scales
Small-scale: vertex
Intermediate-scale: subgraph
Large-scale: whole-graph
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Topological analysis: 
essential properties







Degree and strength
degree of a vertex: number of incident edges
strength of a vertex: sum* of (absolute value 
of**) edge labels of incident edges
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3 4
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0.4


0.5
0.7


-0.3


0.2


s(1)=0.4


s(4)=1.2


s(5)=0.8


d(1)=1


d(4)=2


d(5)=2


graph properties obtain trivially, e.g. total strength, 
average degree. * some authors normalise by  |V| -1


** more on this later







Application: fMRI/Schizophrenia
Goal: Compare HC and SZ brain graphs


Data: rsfMRI (17 mins), N=15 HC +12 SZ


Vertices: 72 (AAL subset) 


Edge labels: wavelet correlation, 0.06 – 0.125 Hz


Results


Significant group differences in several topological measures


[Lynall et al., J Neuroscience, 2011]







Characteristic path length
(characteristic) path length*: typical 
separation between two vertices
(geodesic) distance between j and k = shortest 
path : ljk


20
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3 4


5PccL PccR
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ParSupR
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Vertex 1 2 3 4 5
l1k 1 2 3 3
l2k 1 1 2 2
l3k 2 1 1 1
I4k 3 2 1 1
l5k 3 2 1 1


L(g) =
1


R(R� 1)


X


j,k,k 6=j


ljk


*[Watts & Strogatz, Nature, 1998]


L(g)=1.7







Clustering coefficient
Clustering coefficient*: probability of neighbours 
to have neighbours
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1 2


3


4 5


PreCenR RolOpR


TempInfRPostCenR


HesR


C(3)=2x3/4x3=0.5


C(1)=2x2/3x2=2/3


C(g) =
1


|V 0|
X


vi2V 0


C(vi), vi 2 V 0 i↵ d(vi) > 2 n connected triples that are not triangles


*[Watts & Strogatz, Nature, 1998]


C(i) =
2|E


neighbours(i)|
d(i)(d(i)� 1)


triangles/triples: C(3)=3/6=0.5







Small worldness
small-world network*: high clustering but low 
charateristic path length - somewhere in between 
random and regular 
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�(g) =
C(g)/C(g0)


L(g)/L(g0)


>1


≈1


*[Watts & Strogatz, Nature, 1998]







Application: ECoG/temporal lobe epilepsy
Goal: Study TLE duration effects on connectivity
Data: N=27 TLE, 4x5 ECoG grid on temporal lobe, 5x4096 samples (~40 s.)
Vertices: 20 ECoG channels
Edge labels: Phase lag index (0-1)


Results
Connectivity, clustering coefficients and small-worldness decrease with 
disease duration. Maybe surgery done sooner would help.


[van Dellen et al.,  PLoS one, 2009]







Topological analysis: 
other commonly used 


properties







Global efficiency
Global efficiency* of a vertex: closeness to 
other vertices in the graph
(geodesic) distance between i and k = shortest 
path : lik
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Eg(i) =
1


R� 1


RX


k=1,k 6=i


1


lik


1 2


3 4


5PccL PccR
FusR


ParSupR
PrecR


*[Latora & Marchiori, Physical Review Letters, 2001]


Vertex 1 2 3 4 5
l1k 1/1 1/2 1/3 1/3
l3k 1/2 1/1 1/1 1/1


Eg(1)=0.54


Eg(3)=0.87







Application: DWI/Alzheimer
Goal: study the relationship beween white-matter connectivity 
and cognitive performance
Data: N=50 AD+15 EC, 45 directions DWI (!), Ψ tests
Vertices: AAL90
Edge labels: deterministric tractography+fiber bundle counts


Results
In patients, global efficiency correlates strongly with executive 
function (and other domains with other topological properties)


[Reimer et al., Neurology, 2013]







Local efficiency
Local efficiency* of a vertex: measure of 
fault tolerance 
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El(i) =
1


RGi(RGi � 1)


X


k,j2Gi


1


ljk


1 2 4 5


1 1/1 1/1 1/2


2 1/1 1/2 1/3


4 1/1 1/2 1/1


5 1/2 1/3 1/1


1 2
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4 5
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TempInfRPostCenR


HesR


El(3)=0.72


*[Latora & Marchiori, Physical Review Letters, 2001]







Application: MEG/cognitive load
Goal: study graph topology under varying cognitive load


Data: 16 HC, visual memory task (0-2 back), 6 x 14 x task, 
MEG 1kHz sampling + 0.03-330 Hz BPF
Vertices: 87 sensors


Edge labels: trial-averaged phase synchronisation, thresholded


Results
Local efficiency decreases (less local clustering, more 
segregation) with increasing load in beta band


[Kitzlbicher et al., J. Neurosci, 2011]


0-back 1-back 2-back 2 vs 0
efficiency efficiency efficiency log p-val







Rich club
Rich club1: high-degree vertices that are also 
highly connected to each other


291[Wasserman & Faust, 1994] and others
2[Zhou & Mondragon, IEEE Comm. Lett., 2004]


Rich club coefficient2:


vertices with degree > k


edges in V>k


�k(g) =
2|E>k|


|V>k|(|V>k|� 1)


*[Colizza et al., Nature Physics, 2006]


But! Hubs have higher 
probability of sharing edges just 
because they have high degree*...


�k(g)


�k(g0)
so use


*







Application: histo/rat connectome
Goal: Topological characterisation of rat connectome
Data: mining >250 papers on axonal tracing
Vertices: 73 cortical
Edge labels: non-linear mapping of ordinal categories


Results
Rich-club nodes form a continuous U-shaped band in rat 
cortex


[Bota et al., PNAS, 2015]







Machine learning on topological properties
We can view topological properties as “deep” 
feature extractors


Represent each graph and/or vertex by a vector of graph 
and / or vertex properties1,2,3 


Intermediate step between simple embeddings and graph 
kernels


No complete invariants (degeneracy): use several 
properties4,5


Performance can be relatively high, especially for large graphs


1 2


3 4
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3 4
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subject 1 subject 2


1 [Cecchi et al., NIPS, 2009]
2 [Richiardi et al., PRNI, 2011]


3 [Bassett et al., NeuroImage, 2012]
4[Li et al., MLG, 2011] 5 [Bonchev et al, J Comput Chemistry 1981]







Application: fMRI/prediction from preparation
Goal: predict color/motion judgement errors, and which task the 
subject is preparing for, from preparation phase


Data: 10 HC, 72 x 3 conditions, TR=2s


Vertices: 70 regions from searchlight on beta map


Edge labels: concatenated trials, wavelet 0.06-0.12 Hz, thresholding


Embedding: 10 vertex properties + 11 graph properties (711 
dimensions)


Results
Can discriminate task and
errors well above chance


Change of graph topology
in V4 (color-sensitive) and
hMT (motion-sensitive) is
predictive of errors


[Ekmann et al.,  PNAS,  2012]







Communities & 
Modularity







Communities & Modularity
Often, some subgraphs can be
more strongly connected than expected.


Q=0.75


partition vector
p=111122223333







Example: co-authorship network


31284 vertices, 500 real 
communities,500 fake 
communities


Subset of top 5K DBLP data http://snap.stanford.edu/data/



http://snap.stanford.edu/data/

http://snap.stanford.edu/data/





Comparing community structures
Similarity between community assignments of 
two graphs as a proxy of their similarity


This is the same problem as comparing clusterings


Assignment of vertices to communities in 


Measure similarity between partition vectors, e.g.1,2


Permute group labels and recompute to obtain p-value


pi 2 N|V |


NMI(pi,pj) =
2I(pi,pj)


I(pi,pi) + I(pj ,pj)


1[Alexander-Bloch et al., NeuroImage, 2012 ] 2[Ambrosen et al., PRNI, 2013]


p1 p2


from normalised
table counts







Application: fMRI/Schizophrenia
Goal: discriminate patients with schizophrenia


Data: 23 HC, 23 SZ, TR=2.3s, rest, 2x3 min (144 points)


Vertices: Subparcellated Harvard-Oxford, 278 regions


Edge labels: thresholded and binarised absolute wavelet 
correlation, 0.05-0.1Hz


Results


[Alexander-Bloch et al., NeuroImage, 2012 ]







Community scoring
How do we measure the strength of a community?


W: weight inside subgraph
B: weight on boundary


edges inside1: W
conductance2: B/(2W+B)
modularity3: f(W-E(W))
normalised community strength4:  W/(W+B)
Many more... see Yang & Leskovec 2012


1[Radicchi et al., PNAS, 20014] 2[Shi & Malik, IEEE TPAMI, 2000] 3[Newman, PNAS, 2006] 4[Richiardi, Proc. PRNI 2013]







Application: imaging genomics
Goal: Ascertain whether resting-state networks (modules) are linked with gene 
expression


Data: rsfMRI: N=15 + post-mortem genomics: N=6 (~1800 samples) + in-vivo 
genotyping: N=259 + mouse connectome & gene expression


Vertices: human: grouped by IC-derived rs networks in both modalities. mouse: 
meso-scale parcellation


Edge labels: human: wavelet correlation, transcriptional similarity. mouse: axonal 
connectivity


Results
resting-state modules have particularly strong transcriptional similarity, variants in 
136 genes modulate in-vivo rsfMRI connectivity, gene set maps to axonal 
connections in mouse


[Richiardi et al., Science, 2015]
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Multiplex graphs







Multiplex graphs
What about dynamic connectivity? 
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multiplex graph


t=0
t=1


t=2 A2


A1


A0


multiplex properties2


d(i) =
X


↵


d(i)[↵]


2[Battiston et al., Phys. Rev. E., 2014]


multiplex communities1







Application: learning
Goal: characterize functional connectivity changes during 
motor learning


Data: fMRI, 3 hours+ sessions, N=18


Vertices: 112 (HO)


Edge labels: wavelet 0.06-0.12 Hz, correlation, FDR threshold


Results


Organisazion in modular at all time scales. Fewer modules for 
longer time periods, more modules for shorter time periods.


[Bassett et al., PNAS, 2011]







Part II
GRAPH PRACTICE







Methods issues







Brain graph analysis pipeline


[de Vico Fallani, J.R., et al., Phil. Trans. Royal Soc. B, 2014]







Defining vertices
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voxelwise regionwiseregionwise
local distributed


Atlas region2


Voxel1 Spherical ROI3


Supra-threshold blob4 Cluster5


Spatial ICA component6
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1 [Biswal et al, NeuroImage, 1995] 2 [Achard et al, J. Neurosci, 2006]


5 [Cordes et al, MRI, 2002]


4 [Nir et al, NeuroImage, 2006]


3 [Shehzad et al., Cer. Cor., 2009]


6 [Jafri et al., NeuroImage, 2008]
[Cao and Worsley, Phil. Trans. R. Soc. B, 2005]







Pros and cons of spatial definitions
Voxelwise vertices: 
+ best spatial resolution
+ don’t mix potentially distinct neuronal activity
- large graphs: |E| grows as O(|V|2)
- low SNR per vertex timecourse
- subject-to-subject correspondance depends entirely on spatial 
normalisation


Regionwise anatomical vertices
+ improved SNR
+ reasonable size graphs
+ fixed anatomical correspondance
- no guarantee function matches anatomy...


Regionwise data-driven vertices
+ fewer assumptions (actually, other assumptions)
- need to ensure between-subjects consistency (GICA can enforce this)


- train / test separation becomes more tricky
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Edge labeling functions - Pearson and variants
With                       the zero-mean timecourse 
associated to vertices i,j, the lag-Δ correlation is  


But max correlations generally at 0 lag1,2 (long TR?)


From the inverse of the empirical correlation matrix 
matrix                                     we get partial 
correlations3
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⇢�ij =
x


T
i x


�
j


||xi||2||x�
j ||2


2 [Christova et al.,  J. Neur. Eng, 2011]
1 [Jafri et al., NeuroImage, 2008]


3 [Marrelec et al., NeuroImage, 2006]
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Dealing with negative edge labels


[Mason et al., BMC Genomics, 2009]


Aij = |�(vi, vj)|� Aij = |0.5 + 0.5�(vi, vj)|�







Graph filtering
Topological properties depend non-linearly on 
threshold, so how to choose?


No thresholding - need to normalise


Single threshold - statistical vs topological


multiple thresholds - range or all (integrate, multiple tests, 
functional curve analysis)
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Choosing topological measures
Appropriate measures depend on technical 
issues


Weighted/unweighted graph


Negative/positive edge labels


Connected/disconnected graphs


Choice also depends on the research 
question


Scale of interest: large, intermediate, small?


Interpretation of distance: functional vs 
physical







Choosing a null model
Many ways to generate a null


Surrogate data (e.g. Fourier phase scrambling)
Adjacency matrix randomization
Degree-preserving rewiring


Sadly, depends on the edge labeling function
Bivariate connectivity estimation can lead to inflated 
clustering because of transitivity problem
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Statistical testing with topological properties


Hypothesis testing on graph/vertex properties 
is the most common approach to graph 
comparison in the neuroimaging literature1


This allows freedom in the choice of spatial scale


Multiple comparison problem less severe than edge stats


But...many graph properties are correlated2,3,4


2 see e.g.[Lynnal et al., J. Neurosci. , 2010],  3 [Alexander-Bloch et al., Front. Syst. Neurosci., 2010] 
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1 see e.g.[Achard & Bullmore, PLoS CompBiol, 2007]







Data issues







fMRI data processing pipeline


normalisation


realignment


structural
atlasing


functional
atlasing


regional 
averaging DWT dependency 


computation learning


inverse 
warping


embedding


filtered regional
time series 


individual 
functional atlas


regional
time series 


functional
connectivity matrix 


feature 
vector


structural image 


functional data


denoising


estimation biases


subject noise


hardware noise


X 2 RR⇥T







Pathological brains
Global or focal atrophy


Affect segmentation
Lesions


Affect segmentation and normalisation
Vascular issues


Affect connectivity estimators


[Richiardi et al., Neurobiology of Aging, 2015] [Seghier et al., NeuroImage, 2008]
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Software
functional connectivity computation


• http://www.stanford.edu/~richiard/software.html


Visualization


• http://flexbgv.sourceforge.net/
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5. Logistic


http://brain-connect.sciencesconf.org


Second Brain Connectivity 
Course Grenoble 2015


Second Brain 
Connectivity Course 


Grenoble 2015


43 Participants


- Grenoble= 8


- France= 14


- World (Europe, US, Australia, Japan India): 15


- Speakers = 6


http://brain-connect.sciencesconf.org
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Second Brain 
Connectivity Course 


Grenoble 2015


Sponsors
- SFR1 (MRI- A Krainik)
- SFR3 (Stendhal University)
- FLI : France Life Imaging
- GrenobleAlpes Metropole
- GIN: Grenoble Institute Neuroscience


http://brain-connect.sciencesconf.org


Scientific organization: Dr Assia Jaillard. Pr. Alexandre Krainik (SFR1; GIN ; CHUG)  Dr. Thomas Zeffiro (Neural Systems
Group; Boston); Chantal Delon Martin (GIN); Nadine Micoud (CHUG)


This course will give an overview of the methods for functional brain connectivity analysis in fMRI 
and structural connectivity using Diffusion MRI. Designed to help clinicians and researchers in 
planning and analyzing MRI studies, this course includes a theoretical background and a 
demonstration for each software. Additional training session is proposed on Friday afternoon


 Functional connectivity Toolbox (Conn) Thomas Zeffiro (Havard University, Boston) 


 Automatic Registration Toolbox (ART) Thomas Zeffiro (Havard University, Boston) 


 Graph Theory (Brain waver) for resting state fMRI: Jonas Richiardi (Stanford University /Lausanne)


 Diffusionist for tractography  and group analysis of DTI data: Félix Renard (IRMaGe , Grenoble)


Functional Connectivity 


Course 


Grenoble 2013
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Objectives


- Overview of the different approaches of  
functional and structural connectivity 


- Which approach is appropriate to analyze a 
dataset ?


- Limitations


- Lectures, demos and Training


Second Brain Connectivity Course 
Grenoble 2015


Logistic  aspects
Laptop with MATLAB: Linux, Windows or Mac
Virtual machine/ double boot for Brainwaver and Diffusionist
Softwares: conn toolbox; spm12; ART; Xjview and datasets can be copied 
Download TrackVis for tractography training


Meals
- Lunch
- Breaks
- dinner


Questions
- Assia Jaillard
- Nadine Micoud
- Georges Gérard
- Chantal Delon Martin
- Renard Félix
- Thomas Zeffiro


http://brain-connect.sciencesconf.org/
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Second Brain connectivity Course: 
Program overview


Monday Tuesday Wednesday Thursday Friday


Morning
9h-12h30


Welcome
Connectivity
overview


Seed based 
connectivity
Conn set up


CONN toolbox 
2nd level


DTI
Tractograp
hy


Diffusionist
DTI & demo


Afternoon
14h-18h


Preprocessi
ng
ART


CONN toolbox 
fisrt level


CONN toolbox 
2nd level


Graph
Theory
demo


Training
Round table


Evening
18h30


Welcoming 
reception


Bastille ? Restaurant
Caffe Forte


Wine & 
cheese


Schedule


Time Type Event


09:00 - 09:30 Logistics Welcome and badges distribution 


Coffee & tea
09:30 - 10:00 Introduction (Assia Jaillard)


10:00 - 10:30 Break Coffee & tea 


software copy
10:30 - 12:00 Lecture Functional connectivity Overview (Thomas Zeffiro)


12:00 - 13:30 Break Lunch 


13:30 - 15:30 Speech Functional connectivity preprocessing- Thomas Zeffiro 


15:30 - 16:00 Break Refreshment and coffee 


16:00 - 18:30 Speech ART - Thomas Zeffiro 


18:30 - 20:00 Break Welcoming reception 


Monday 21 sept 2015



http://funconnect2013.sciencesconf.org/administrate-program/index
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Brain graph 
connectivity computation


Maite Termenon


Equipe Barbier - Neuroimagerie Fonctionnelle et Perfusion Cérébrale
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Outline


Graph metrics


– Type of metrics


– Concept of cost


– Main metrics


– Concept of hub


Processing pipeline


– Image preprocessing


– Time series extraction


How to compute graphs - Demo


– Time series extraction


– Connectivity matrices


– Graph computation


– Graph metrics extraction


  


[S. Achard et al, J. Neurosci., 2006]
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Outline


Graph metrics


– Type of metrics


– Concept of cost


– Main metrics


– Concept of hub


Processing pipeline


– Image preprocessing


– Time series extraction


How to compute graphs - Demo


– Time series extraction


– Connectivity matrices


– Graph computation


– Graph metrics extraction


  


[S. Achard et al, J. Neurosci., 2006]
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Type of metrics


● Global metrics: describe a global characteristic of the whole graph.
● Too general


● Regional metrics: describe a characteristic of each node.
● More informative
● More robust
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Concept of cost


Cost (density or sparsity) of a graph: ratio 
between the number of links and all the 
possible links in the graph.


11 nodes → Each node: 10 possible links → 110 
links in total → undirected graph: 110/2=55 links
13 links in the graph


13/55=24% cost
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Concept of cost


Cost (density or sparsity) of a graph: ratio 
between the number of links and all the 
possible links in the graph.


11 nodes → Each node: 10 possible links → 110 
links in total → undirected graph: 110/2=55 links
13 links in the graph


13/55=24% cost


2.5% cost 10.0% cost 95.0% cost
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Metrics I


Degree (k
i
) of a node: number of connections of 


that node.


Node 1 → k
1 
= 6


Node 3 → k
3 
= 1


Node 11 → k
11 


= 3
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Metrics I


Degree (k
i
) of a node: number of connections of 


that node.


Node 1 → k
1 
= 6


Node 3 → k
3 
= 1


Node 11 → k
11 


= 3


Minimum path length (L
i
) of a node: mean of 


the minimum paths that links one node to the 
rest of nodes in the graph.


To go from node 11 to the others:
● 3 connections of 1 edge
● 2 connections of 2 edges
● 3 connections of 3 edges
● 2 connections of 4 edges


For node 1 → L
1
=1.4


L
11


 = 2.4
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Metrics I


Minimum path length (L
i
) of a node: mean of 


the minimum paths that links one node to the 
rest of nodes in the graph.


To go from node 11 to the others:
●  3 connections of 1 edge
●  2 connections of 2 edges
●  3 connections of 3 edges
●  2 connections of 4 edges


For node 1 → L
1
=1.4


L
11


 = 2.4


Global efficiency (e
i
) of a node: 


e
i
=1/L


i


Node 1   → e
1 
= 0.71


Node 11 → e
11 


= 0.42


Global efficiency (E
i
) of a graph: 


mean of e
i
, i=1...N


Degree (k
i
) of a node: number of connections of 


that node.


Node 1 → k
1 
= 6


Node 3 → k
3 
= 1


Node 11 → k
11 


= 3
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Metrics II


Clustering (c
i
) of a node: measure of 


information transfer in the immediate 
neighbourhood of each node. 


Ratio of number of connections between node 
i’s neighbors to total of possible connections.
c


11
=0/3=0 


c
1  


=0/6=0
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Metrics II


Clustering (c
i
) of a node: measure of 


information transfer in the immediate 
neighbourhood of each node. 


Ratio of number of connections between node 
i’s neighbors to total of possible connections.
c


11
=0/3=0 


c
1  


=2/3=0.67
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Metrics II


Clustering (c
i
) of a node: measure of 


information transfer in the immediate 
neighbourhood of each node. 


Ratio of number of connections between node 
i’s neighbors to total of possible connections.
c11=0/3=0 
c1  =0/6=0


Betweenness centrality (b
i
) of a node: number 


of shortest paths between 2 nodes that passes 
trough node i.
e.g. between nodes 5 and 11:


b'
1  


=3/4


b'
10


=1/4 
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Metrics III


Concept of «Hubs»: relevant nodes in the graph 
that if they are removed, the graph is highly 
affected.
- high k


i
, e


i
, b


i


- short L
i
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Outline


Graph metrics


– Type of metrics


– Concept of cost


– Main metrics


– Concept of hub


Processing pipeline


– Image preprocessing


– Time series extraction


How to compute graphs - Demo


– Time series extraction


– Connectivity matrices


– Graph computation


– Graph metrics extraction


  


[S. Achard et al, J. Neurosci., 2006]
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Image preprocessing pipeline I


REALIGN
SLICE


TIMING...


...
EPI


...


...
arEPI


REALIGN


meanEPI


Head motion
file


400x6


COREGISTER
(Estimate)


T1


rT1
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Image preprocessing pipeline II


SEGMENT c1 - GM c2 - WM c3 - CSF c4 - Skull c5 - nobrain 


rc1 - GM rc2 - WM rc3 - CSF


TPM


c6 - air 


rc4 - Skull rc5 - nobrain rc6 - air 


rT1


template6template5template4 template3 template2template1


Elastic registration
e.g. DARTEL


Deformation
fields


Apply 
WARP 


...


...
arEPI


EPI (MNI)


...


...


c1GM
(MNI)
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Image preprocessing pipeline III


Obtain
TIME SERIES


REGRESSION:
WM, CSF, head motion +


 1 deriv, ART ...


Compute mean
per region
per image


R


... EPI (MNI)
c1GM
(MNI)


AAL


Compute
GRAPHS


Extract the voxels of each EPI that 
belongs to a region. 


Weight them by GM probabilistic map.
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Outline


Graph metrics


– Type of metrics


– Concept of cost


– Main metrics


– Concept of hub


Processing pipeline


– Image preprocessing


– Time series extraction


How to compute graphs - Demo


– Time series extraction


– Connectivity matrices


– Graph computation


– Graph metrics extraction


  


[S. Achard et al, J. Neurosci., 2006]
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Brainwaver


Brainwaver package in R


– Developed by Sophie Achard.


– Available in:


https://cran.r-project.org/web/packages/brainwaver/index.html


Main advantages:


– Wavelets


– P-value that removes the low correlations
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Graph computation


De Vico Fallani, Phil. Trans. R. Soc. B, 2014
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Graph computation


De Vico Fallani, Phil. Trans. R. Soc. B, 2014


Time series extraction
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Code – Time series


library('oro.nifti')


library('AnalyzeFMRI')


# add paths and names


setwd("/media/mainux/My Passport/DEMO")


path.ROI='./templates/AAL_116'


name.ROI='rROI_MNI_V4.nii'


path.GM='./control/Processed/Exam0/Anat'


name.GM='rDartMNI_c1tem17a_WIP_Anat-DC-IT_SENSE_15_1.nii'


path.RS='./control/Processed/Exam0/Functional/Realigned'


name.RS='rDartMNI_artem17a_WIP_New_RESTING_STATE_SENSE_1
2_1.nii'


path.TS='./control/Processed/Exam0/Functional/TS/AAL116'


name.TS='func_ROI_ts_AAL116'


# load parcellation template


vol.ROI<-readNIfTI(paste(path.ROI,name.ROI,sep='/'),reorient=F)


# load GM volume


vol.GM<-readNIfTI(paste(path.GM,name.GM,sep='/'),reorient=F)


# obtain number of EPI volumes


info.RS<-f.read.nifti.header(paste(path.RS,name.RS,sep='/'))


length.RS<-info.RS$dim[5]


# obtain number of regions


regions<-unique(as.vector(vol.ROI))


regions<-regions[regions!=0]


n.regions<-length(regions)


# initialize TS matrix


data.TS<-matrix(0,length.RS,n.regions)


for(i in 1:n.regions){


  # Extract indexes of region i


  index.ROI<-which(vol.ROI==regions[i],arr.ind=TRUE)


  size.ROI<-dim(index.ROI)[1]


  


  # Extract GM TPM of region i


  coef.GM<-vol.GM[index.ROI]


  


  # Extract the TS for region i  


  region.TS<-matrix(0, length.RS, size.ROI)


  


  for(j in 1:length.RS){  


    vol.RS<-f.read.nifti.tpt(paste(path.RS,name.RS,sep='/'), j)              


    data<-vol.RS[index.ROI]


    region.TS[j,]<-as.matrix(data*coef.GM)


  }


  data.TS[,i]<-rowMeans(region.TS, na.rm = FALSE, dims = 1)   


}


# save into a txt file


write.table(data.TS,paste(path.TS,'/',name.TS,'_raw.txt',sep=''),col.names=FALS
E,row.names=FALSE,quote=FALSE)
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Code – Regression of head 
movements


# Load TS


data.TS=read.table(paste(path.TS,'/',name.TS,'_raw.txt',sep=''), sep="", fill=FALSE, strip.white=TRUE)


data.TS<-as.matrix(data.TS)


# Load head movements file


file.mov<-list.files(path.RS,pattern=glob2rx("rp*.txt"))


data.mov <- read.table(paste(path.RS,file.mov,sep='/'), header=FALSE)


data.mov <- as.data.frame(data.mov)


# Create regressor


length.TS <- length(data.TS[,1])


data.regressor <- rbind(0, data.mov[-length.TS,])


data.regressor <- cbind(data.mov, data.mov - data.regressor)  #compute the first derivative


names(data.regressor) <- c("p1","p2","p3","p4","p5","p6","p1d","p2d","p3d","p4d","p5d","p6d")


write.table(as.matrix(data.regressor),paste(path.TS,'/Regressors_Head_movements.txt',sep=''),col.names=FALSE,row.names=FALSE,quote=FALSE)


# Get the residuals of the linear regression between the ts and the movement data


data.correct <- resid(lm(as.matrix(data.TS) ~ as.matrix(data.regressor))) 


data.correct <- as.data.frame(data.correct)  


write.table(data.correct,paste(path.TS,'/',name.TS,'_ts_headMovRegressed.txt',sep=''),col.names=FALSE,row.names=FALSE,quote=FALSE)  
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Graph computation


De Vico Fallani, Phil. Trans. R. Soc. B, 2014


Correlation matrices
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Connectivity matrices


Frequency 
domain


- Wavelet 
decomposition


- Fourier 
transformation


Brain time series


Correlation matrices
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Wavelets computation


library('waveslim')


library('brainwaver')


# Load TS


data.TS<-read.table(paste(path.TS,'/',name.TS,'_ts_headMovRegressed.txt',sep=''))


data.TS<-as.matrix(data.TS)


length.TS<-dim(data.TS)[1]


n.regions<-dim(data.TS)[2]


# Choose a region in the brain


PreCG.R<-data.TS[,1]


# Compute wavelets coefficients


PreCG.R.la8 <- wave.trans(PreCG.R, wf="la8")


names(PreCG.R.la8) <- c("w1", "w2", "w3", "w4", "v4")


# Plot results


par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))


plot.ts(PreCG.R, axes=FALSE, ylab="", main="(a)")


for(i in 1:5)


  plot.ts(PreCG.R.la8[[i]], axes=FALSE, ylab=names(PreCG.R.la8)[i])


axis(side=1, at=seq(0,418,by=50),


  labels=c(0,"",100,"",200,"",300,"",400))
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Correlation matrices


library('brainwaver')


library('fields')


# Load TS


data.TS=read.table(paste(path.TS,'/',name.TS,'_ts_headMovRegressed.txt',sep=''), sep="", fill=FALSE, strip.white=TRUE)


data.TS<-as.matrix(data.TS)


# Compute correlation matrices


n.levels<-4


wave.cor.list<-const.cor.list(data.TS,n.levels=n.levels)


# Display corr matrices


par(mfrow=c(2,2))


image.plot(abs(wave.cor.list$d1),main='wavelet scale 1')


image.plot(abs(wave.cor.list$d2),main='wavelet scale 2')


image.plot(abs(wave.cor.list$d3),main='wavelet scale 3')


image.plot(abs(wave.cor.list$d4),main='wavelet scale 4')
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Correlation matrices


Connectivity control


Connectivity stroke
patient
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Graph computation


De Vico Fallani, Phil. Trans. R. Soc. B, 2014


Graph computation
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Graph computation


Correlation matrices Adjacency matrices


Fix number 
of edges
e.g. 400 for 
10% cost
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Adjacency matrices


wave.cor.list<-const.cor.list(data.TS,n.levels=n.levels)


# To threshold the values greater than 0.4 for example


adj.mat.1<-const.adj.mat(wave.cor.list[[1]], sup = 0.40,proc.length=dim(data.TS)[1], num.levels=1)


adj.mat.2<-const.adj.mat(wave.cor.list[[2]], sup = 0.40.length=dim(data.TS)[1], num.levels=2)


adj.mat.3<-const.adj.mat(wave.cor.list[[3]], sup = 0.40,proc.length=dim(data.TS)[1], num.levels=3)


adj.mat.4<-const.adj.mat(wave.cor.list[[4]], sup =0.40,proc.length=dim(data.TS)[1], num.levels=4)


# According to the desired cost in the graph, we fix the number of edges; 


n.edges<-400


# The function choose.thresh.nbedges fixes the correlation threshold in order to get a given number of edges in the graph


sup.thresh<-choose.thresh.nbedges(wave.cor.list[[3]],nb.edges=n.edges, proc.length=dim(data.TS)[1],num.levels=3)


# Display adjacency matrices


par(mfrow=c(2,2))


image.plot(adj.mat.1,main='Scale 1')


image.plot(adj.mat.2,main='Scale 2')


image.plot(adj.mat.3,main='Scale 3')


image.plot(adj.mat.4,main='Scale 4')
Control VS Patient
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Graphs visualization


file.coord<-read.table(paste(path.COORD,,name.COORD,sep='/'),  
header=FALSE)


n.regions<-dim(file.coord)[1]


set2 <- file.coord[,2:4]


euclid <- 2 * dist(set2, method = "euclidean")


x.euclid <- as.matrix(euclid)


index <- c(1:(n.regions/2))*2 # right and left regions


set2 <- as.matrix(set2)


set2[index,c(2,3)] <- set2[index,c(2,3)] + 1.5


par(mfrow=c(1,2))


x.coord<-2


y.coord<-3


plot(set2[,x.coord], set2[,y.coord], type = "p",xlab= "", ylab="",cex.lab=2,


     asp=1,ylim=c(min(set2[,y.coord]),max(set2[,y.coord])),


     xlim=c(min(set2[,x.coord]),max(set2[,x.coord])),xaxt='n',


     yaxt='n',bty='n',main='Sagittal view',cex=0.5,pch=16,cex.main=2)


for(kk in 2:(n.regions)){


  for(q in 1:(kk-1)){


    if(adj.mat[kk,q]==1)


    {


      if(x.euclid[kk,q]>85) visu <- "blue"


      else visu <- "red"


      lines(c(set2[kk,x.coord], set2[q,x.coord]),


            c(set2[kk,y.coord], set2[q,y.coord]), col = visu,lw=2)


    }


  }


}


x.coord<-1


y.coord<-2


plot(set2[,x.coord], set2[,y.coord], type = "p",xlab= "", ylab="",cex.lab=2,


     asp=1,ylim=c(min(set2[,y.coord]),max(set2[,y.coord])),


     xlim=c(min(set2[,x.coord]),max(set2[,x.coord])),xaxt='n',


     yaxt='n',bty='n',main='Top view',cex=0.5,pch=16,cex.main=2)


for(kk in 2:(n.regions)){


  for(q in 1:(kk-1)){


    if(adj.mat[kk,q]==1)


    {


      if(x.euclid[kk,q]>85) visu <- "blue"


      else visu <- "red"


      lines(c(set2[kk,x.coord], set2[q,x.coord]),


            c(set2[kk,y.coord], set2[q,y.coord]), col = visu,lw=2)


    }


  }


}
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Results


Graph control


Graph stroke
patient
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Network metrics extraction


De Vico Fallani, Phil. Trans. R. Soc. B, 2014


Graph metrics
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Code – Node degree


degree.dist<-rowSums(adj.mat.3)


   


Result:


   [1]  2  2 11  8 28  9  8  9  2  0  7 20 19 11  1  8  6  5  5  9  3  6 10  6 10 11 15 18  9 12  9 17  0 17 14 11  2  9  9  1  3  1  2  1


 [45] 14  8  0 10  1  0  1  1  2  9 15  9  4  2  2 20  1  1 22  0  2  2  1  6  2  5 21  1  1  4  4  0  2  8  4  4  1  2  2  4  2  4 14 26


 [89]  2  3  6  8  1 16 12 28 10 10  1  3 15  5 11 15  4 10 19 24  2  9  3 13 10  1  6  1
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Code - Global efficiency


Global level:


Eglob.brain<-global.efficiency(adj.mat.3, weight.mat=matrix(1,n.regions,n.regions))$eff


Control:  0.28


Patient:  0.26


Regional level:


Eglob.brain.nodal<-global.efficiency(adj.mat.3, weight.mat=matrix(1,n.regions,n.regions))$nodal.eff


Control: 


    [1] 0.33 0.37 0.34 0.32 0.26 0.40 0.41 0.36 0.29 0.00 0.39 0.35 0.35 0.32 0.29 0.34 0.35 0.34 0.37 0.41 0.29 0.36 0.39 0.24 0.30 0.29


  [27] 0.00 0.01 0.35 0.33 0.38 0.41 0.02 0.26 0.30 0.00 0.01 0.01 0.30 0.39 0.28 0.22 0.01 0.01 0.35 0.22 0.27 0.24 0.31 0.31 0.01 0.01


  [53] 0.29 0.25 0.32 0.31 0.34 0.37 0.30 0.28 0.34 0.35 0.28 0.23 0.33 0.21 0.26 0.33 0.30 0.30 0.30 0.21 0.21 0.28 0.01 0.02 0.26 0.23


  [79] 0.28 0.37 0.27 0.37 0.41 0.41 0.39 0.33 0.34 0.33 0.31 0.27 0.29 0.33 0.23 0.31 0.23 0.25 0.30 0.30 0.24 0.32 0.31 0.35 0.41 0.24


[105] 0.35 0.31 0.30 0.31 0.28 0.27 0.26 0.36 0.37 0.32 0.39 0.33


Patient:


    [1] 0.26 0.30 0.38 0.32 0.44 0.34 0.32 0.32 0.21 0.00 0.34 0.43 0.42 0.38 0.23 0.31 0.30 0.31 0.30 0.36 0.29 0.29 0.34 0.33 0.35 0.36


  [27] 0.38 0.41 0.36 0.36 0.30 0.40 0.00 0.40 0.39 0.35 0.01 0.37 0.36 0.24 0.02 0.00 0.02 0.02 0.38 0.32 0.00 0.37 0.02 0.00 0.22 0.22


  [53] 0.02 0.36 0.38 0.34 0.28 0.28 0.01 0.42 0.01 0.01 0.44 0.00 0.27 0.02 0.01 0.32 0.23 0.27 0.43 0.01 0.01 0.31 0.31 0.00 0.27 0.34


  [79] 0.25 0.30 0.02 0.21 0.18 0.23 0.18 0.27 0.39 0.45 0.02 0.03 0.28 0.35 0.01 0.39 0.37 0.47 0.35 0.36 0.17 0.27 0.38 0.27 0.36 0.39


[105] 0.23 0.35 0.41 0.45 0.22 0.34 0.22 0.37 0.36 0.00 0.27 0.20
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Code – Local efficiency


Global level:


Eloc.brain<-local.efficiency(adj.mat.3, weight.mat=matrix(1,n.regions,n.regions))$eff


Control:  0.63


Patient:  0.52


Regional level:


Eloc.brain.nodal<-local.efficiency(adj.mat.3, weight.mat=matrix(1,n.regions,n.regions))$loc.eff


Control: 


    [1] 0.68 0.74 0.41 0.23 1.00 0.61 0.70 0.75 0.83 0.00 0.57 0.74 0.77 0.72 0.83 0.71 0.82 0.85 0.80 0.61 0.78 0.67 0.63 1.00 0.76 0.79


  [27] 0.00 0.00 0.82 0.10 0.81 0.68 0.00 0.87 0.76 0.00 0.00 0.00 0.83 0.68 0.92 0.00 0.00 0.00 0.33 1.00 0.80 0.90 0.45 0.52 0.00 0.00


  [53] 0.33 0.42 0.77 0.82 0.82 0.72 0.48 0.00 0.80 0.80 0.87 0.00 0.45 1.00 0.40 0.45 0.92 0.84 0.88 1.00 1.00 0.88 0.00 0.00 0.72 1.00


  [79] 0.78 0.61 0.80 0.60 0.68 0.58 0.72 0.71 0.74 0.72 0.65 0.80 0.75 0.78 1.00 0.29 1.00 0.83 0.85 0.93 1.00 0.90 0.90 0.76 0.55 1.00


[105] 0.81 0.82 0.72 0.42 0.72 1.00 0.00 0.79 0.66 0.64 0.56 0.89


Patient:


    [1] 1.00 0.00 0.56 0.71 0.59 0.70 0.60 0.40 1.00 0.00 0.79 0.54 0.62 0.74 0.00 0.77 0.90 0.85 0.85 0.81 0.83 0.82 0.57 0.78 0.82 0.75


  [27] 0.67 0.65 0.57 0.69 0.72 0.66 0.00 0.75 0.71 0.68 0.00 0.79 0.73 0.00 0.00 0.00 0.00 0.00 0.72 0.86 0.00 0.85 0.00 0.00 0.00 0.00


  [53] 1.00 0.77 0.67 0.80 0.42 0.00 0.00 0.71 0.00 0.00 0.66 0.00 1.00 0.00 0.00 0.40 1.00 0.35 0.66 0.00 0.00 1.00 0.83 0.00 1.00 0.86


  [79] 0.33 0.33 0.00 1.00 1.00 0.33 1.00 0.72 0.79 0.67 1.00 0.33 0.36 0.82 0.00 0.78 0.56 0.63 0.93 0.84 0.00 0.83 0.71 0.43 0.78 0.73


[105] 0.42 0.64 0.71 0.61 0.00 0.84 0.33 0.66 0.71 0.00 0.50 0.00
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Results - Eglob


Control Patient


5% 10% 20% 30% 5% 10% 20% 30%


PrecGy 0.31 0.37 0.62 0.70 0.27 0.30 0.53 0.60


Precuneus 0.23 0.33 0.60 0.67 0.30 0.32 0.55 0.62


SMA 0.28 0.41 0.70 0.76 0.30 0.36 0.62 0.71


Amygdala 0.00 0.22 0.51 0.59 0.00 0.00 0.36 0.44


Hippocampus 0.00 0.01 0.33 0.43 0.33 0.37 0.64 0.72


Pallidum 0.02 0.02 0.54 0.59 0.00 0.00 0.50 0.61
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Thank you for your attention!
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Brain ConnectivityOverview 
  
 


Thomas Zeffiro M.D. Ph.D. 
 







regional specialization  


regional interaction  











• Functional connectivity 


– Bivariate correlation 


– Multivariate modeling (PCA, ICA, PLS) 


• Effective connectivity 


– Psychophysiologic interaction (PPI) 


– Mediation analysis 


– Structural equation modeling (SEM) 


– Multivariate autoregressive modeling (Granger causality) 


– Dynamic causal modeling (DCM) 


Regional Integration Modeling 







SMA Lateral PMC MI 


Motor Neurons 


MI Lateral PMC SMA 


Motor Neurons 


Motor System Horizontal Organization 







Bivariate correlation 
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N=17 
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• Functional connectivity 


– Bivariate correlation 


– Multivariate modeling (PCA, ICA, PLS) 


• Effective connectivity 


– Psychophysiologic interaction (PPI) 


– Mediation analysis 


– Structural equation modeling (SEM) 


– Multivariate autoregressive modeling (Granger causality) 


– Dynamic causal modeling (DCM) 


Regional Integration Modeling 







Calhoun MRI 2004 







• Functional connectivity 


– Bivariate correlation 


– Multivariate modeling (PCA, ICA, PLS) 


• Effective connectivity 


– Psychophysiologic interaction (PPI) 


– Mediation analysis 


– Structural equation modeling (SEM) 


– Multivariate autoregressive modeling (Granger causality) 


– Dynamic causal modeling (DCM) 


Regional Integration Modeling 







Psycho-physiological Interaction 


(PPI) 


• Measure of effective connectivity, and how it is 


affected by psychological variables 


 


• Looks at how brain activity can be explained by 


the interaction between 2 variables  


– an experimental variable (e.g. level of attention) 


– activity in a particular brain area (source area) 


• This is done voxel-by-voxel across the entire 


brain 


WT Center for Neuroimaging 







PPIs vs typical interactions 


 


T2 S2 


 


T1 S2 


 


T2 S1 


 


T1 S1 


Attend 


eyes 


Attend 


mouth 


Upright 


face 


 


Inverted 


face 


Stimulus 


Task 
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PPIs vs typical interactions 


• A typical interaction 


– Use General Linear Model: 


 


Y =  (T1-T2) β1  +  (S1-S2) β2  +  (T1-T2)(S1-S2) β3  +  e 


 


• A PPI 


– Replace one of the variables with activity in source 


region 


• Eg for source region V1: 


Y =  (T1-T2) β1   +   V1 β2   +   (T1-T2)V1β3   +   e 
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PPI – an example 
• Investigating influence of 2 factors: 


– V1 activity 


– Attention 


On activity in region V5 


• Measure brain activity under 2 conditions of attention 


V1 activity 


V5 activity 


no attention 


attention 


WT Center for Neuroimaging 







Interpreting PPI 


• 2 possible ways: 
– Contribution of source area to 


target area (ie the effective 
connectivity) depends on 
experimental context 


– Response of target area to 
experimental variable depends 
on activity of source area 


V1 V1 V5 


attention 


V1 V5 


attention 


V1 


• Mathematically, both are 
equivalent, but one may be 
more neurologically plausible 


WT Center for Neuroimaging 







• Functional connectivity 


– Bivariate correlation 


– Multivariate modeling (PCA, ICA, PLS) 


• Effective connectivity 


– Psychophysiologic interaction (PPI) 


– Mediation analysis 


– Structural equation modeling (SEM) 


– Multivariate autoregressive modeling (Granger causality) 


– Dynamic causal modeling (DCM) 


Regional Integration Modeling 















Joystick navigation 
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target 


evaluate (2 s) 


navigate (22 s) 







miss 







hit 







TASK 


REST 


+ 
22 s  navigate 


2 s evaluate 


22 s navigate 


2 s evaluate … … 24 s fixate 


Run 


Number 


of MR 


Volumes 


12 24 12 24 12 24 12 24 12 


Experiment timing 


Run length 5.2 min         Five runs per session 







navigate evaluate 
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TASK 
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Experiment factorial design 







Navigate 


t>4.92 p<0.05 FWE corrected 


Evaluate 







Posterior cingulate cortex 


navigate  evaluate  navigate  evaluate 


t>4.92 p<0.05 FWE corrected 
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sleep 


sleep 
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Medial prefrontal cortex 


navigate  evaluate  navigate  evaluate 


t>4.92 p<0.05 FWE corrected 


normal 


sleep 


sleep 


deprived 







Right hippocampus 


navigate  evaluate  navigate  evaluate 


t>4.92 p<0.05 FWE corrected 


normal 
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sleep 
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Default network from Buckner NYAS 2008 
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• Functional connectivity 


– Bivariate correlation 


– Multivariate modeling (PCA, ICA, PLS) 


• Effective connectivity 


– Psychophysiologic interaction (PPI) 


– Mediation analysis 


– Structural equation modeling (SEM) 


– Multivariate autoregressive modeling (Granger causality) 


– Dynamic causal modeling (DCM) 


Regional Integration Modeling 







Structural Equation Modelling 


(SEM) 
• Another way of measuring effective connectivity 


• Like PPI, looks at how effective connectivity is affected 
by experimental variables 


• PET or fMRI 


 


• Looks at covariances in activity between different brain 
areas (the degree to which their activity is related). 


• Combines these data with anatomical model of how the 
areas are connected to one another 


• Connectivity can be compared over time, or across 
different conditions (eg different levels of attention) 


WT Center for Neuroimaging 







Steps in SEM 


1. Select regions of interest 


2. Build model specifying how they’re connected 
to one another. Free parameters of model are 
‘path coefficients’ – represent strength of 
connections 


3. See what patterns of covariance this model 
predicts 


4. Compare to observed patterns of covariance 


5. ‘goodness of fit’ of model is diff between 
predicted and observed patterns 


WT Center for Neuroimaging 







Deciding on regions 


• Use existing fMRI and lesion data to 


identify likely areas 


• We know how these areas are likely to be 


connected from 


– Tracer studies in animals 


– Diffusion Tensor Imaging (DTI) studies in 


humans 


WT Center for Neuroimaging 







Pros and cons of SEM 


• Unlike PPI, can look at influence of many 


brain areas at once 


• But models do not allow the strength of a 


connection to vary over the time series 
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• Functional connectivity 


– Bivariate correlation 


– Multivariate modeling (PCA, ICA, PLS) 


• Effective connectivity 


– Psychophysiologic interaction (PPI) 


– Mediation analysis 


– Structural equation modeling (SEM) 


– Multivariate autoregressive modeling (Granger causality) 


– Dynamic causal modeling (DCM) 
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• Functional connectivity 


– Bivariate correlation 


– Multivariate modeling (PCA, ICA, PLS) 


• Effective connectivity 


– Psychophysiologic interaction (PPI) 


– Mediation analysis 


– Structural equation modeling (SEM) 


– Multivariate autoregressive modeling (Granger causality) 


– Dynamic causal modeling (DCM) 


Regional Integration Modeling 
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Neurodynamics: 2 nodes with input 
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Neurodynamics: positive modulation 
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Neurodynamics: reciprocal 


connections 
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• Diffusion 


sensitive 


gradients applied 


in six directions 


with b=800 


 


• Dark areas 


represent areas 


with a higher 


diffusion 


Diffusion Tensor Imaging 







Fractional Anisotropy (FA) 


• Measure of degree of anisotropy 


regardless of direction 


• Brighter areas correspond to areas 


with higher FA 


 


 FA2  =  (lx - ly)
2 + (lx - lz)


2 + (ly - lz)
2  


     2(lx
2 + ly


2 + lz
2) 







Diffusion Directions 


Red = Left-Right 


Green = Anterior-Posterior 


Blue = Superior-Inferior 
























Conn 


 


Alfonso Nieto Castañón 


http://www.nitrc.org/projects/conn 


Whitfield-Gabrieli & Nieto Castanon 



http://www.nitrc.org/projects/conn

http://www.nitrc.org/projects/conn

http://www.nitrc.org/projects/conn





Conn 


Function: Perform functional connectivity analyses  


 


• The toolbox implements  art  for motion artifact rejection and 


the aCompCor strategy for physiological (and other) noise 


source reduction, first-level General Linear Model for 


correlation and regression connectivity estimation, and second-


level random-effect analyses. 


 


• The toolbox is designed to work with both resting state scans 


and block designs where rest is another block amongst other 


conditions.    


 


The following slides illustrate the basic operation of the toolbox 







Steps 


Step 1:  Setup 


Step 2: Denoise and explore confounds 


Step 3: Analyze and view 1st level results 


Step 4: Define contrasts and view 2nd  level results. 


Conn 







SETUP 


   Defines experiment information, file sources for 


functional data, structural data, regions of interest, 


and other covariates. 


Conn 







Conn Setup 


SETUP 


   Basic : Defines basic experimental information 


In this example: 10 subjects 


  TR = 2 seconds 


   


Conn 







SETUP 


   Structural : Defines structural data source files 


Assumes coregistered to functional volumes –i.e. same orientation; use spm 


checkreg to check orientation) 


Conn 







SETUP 


   Functional : Defines functional data source files 


  
 


Conn 







SETUP 


ROIs : Define ROI masks (mask files or Talairach coordinate files). 


• By default all files in the rois toolbox folder (./conn/rois) will be imported as initial regions 


of interest. To import new ROIs, click below the last ROI listed.  


• The special ROIs corresponding to grey matter, white matter, and CSF can be imported 


here (if they have already been created) or they will be automatically created from each 


subject structural data.  


 


Conn 







SETUP 


ROIs :  


For each ROI a number of functional time-series (dimensions) can be extracted: the 


first time-series is the average BOLD activation within the ROI; the following time-


series are the ones associated with each sequential eigenvariate (from a principal 


component decomposition of the BOLD activation among all voxels within the ROI).  


Conn 







SETUP 


ROIs :  


For each ROI may have multiple ROIs such as the Brodmann atlas (BA) 


Conn 







SETUP 


ROIs :  


The default atlas is now  the Harvard-Oxford Atlas 


In addition to the cerebellum regions from the AAL Atlas 


Conn 







Conn/Rois/Atlas.info 


 







SETUP 


   Conditions : Defines experimental conditions. 


 (assumes block design; conditions are defined 


 by onset and duration of each block) 


-  Onsets and Durations are in seconds.   


Conn 







SETUP 


   Conditions : Optional Fields. 


  


Conn 


Optionally, you may also define a temporal modulation factor  


(in condition-specific temporal modulation; this defaults to a timeseries defined by 


hrf-convolvution of the condition blocks/events) in order to perform gPPI analyses for  


task-related designs, or analyze potential temporal-modulation in fcMRI measures.  


In addition, each condition may have a condition-specific band-pass filter  


as a way to explore potential frequency- modulation of fcMRI measures. 


 


 


 gPPI 







SETUP 


   Conditions : Time-frequency decomposition 


  


Conn 


No decomposition (default)  


Fixed band-pass filter (condition specific bpf) 


Frequency decomposition (filter bank) 


Temporal decomposition (sliding window) 


 







SETUP 


   Conditions :  


Conn 


 


Frequency decomposition  


(filter bank) 


 


Explore frequency-dependent variations: 


select filter-bank in the temporal filter field, 


enter the desired # of frequency filters. This will  


partition the freq band defined in Denoising  


step into n equally-sized frequency regions,  will  


automatically create one condition associated  


with each of these frequency bands.  


This allows you to use between-condition 


 effects/contrasts as a way to analyzing 


 potential frequency-dependent differences 


          in any of your fcMRI measures 







SETUP 


   Conditions :   


Conn 


 


Temporal decomposition 


 (sliding window) 


 


Trade-off when selecting the window length 


 is to get a "long enough" time-window 


 so that the resulting correlation estimates are 


 sensitive (too few samples result in too noisy estimates) 


while being "short enough" to capture slow-varying  


dynamic changes in functional connectivity.  


Between 60s and 100s is a reasonable range. 


  


 







SETUP 


   Covariates – first level: Defines within-subject  covariates (e.g. 


realignment parameters  and outliers) 


(one .txt  or .mat  file per subject/session; files should contain as many rows as 


scans) 


Conn 







Outliers (Artifactual Time Points) 
Six Outliers 







SETUP 


   Covariates – first level:  


 art_regression_outliers_movement * .mat from art 


Conn 







SETUP 


   Covariates – first level:  


art_regression_outliers_movement * .mat from art 


 


Conn 


Dimensions [62 13]: 62 time points, 6 motion, 1 composite, 6 outliers 







SETUP 


   Covariates – first level:  


May enter motion parameters and outliers seperately and choose 


To take the first order derivative of the motion parameters ( in 


conn denoising step). 


 


Conn 







SETUP 


   Covariates – second level: Defines between-subject covariates 


 (e.g. subject groups) 


 (each covariates is defined by a vector with as many values as 


 subjects; use 1/0 to define  subject groups, or continuous values to 


 perform between-subject regression models) 


Conn 







Specification of 2nd level 


Covariates 


  


 


 


 


 


 


 


 


 


 


 


 


For example, we could have a study with two subject groups 


 and one behavioral measure of interest. In the second-level 


 setup step we defined the following second-level covariates:  


All: containing a 1 for all subjects 


groupA: containing 1 for sub in group A and 0 for sub in group B 


groupB: containing 1 for sub in group B and 0 for sub in group A 


 


Behav: containing the behavioral measure for all subjects 


BehavA: containing the behavioral measure for sub in group A and 


0 for sub in group B 


BehavB: containing the behavioral measure for sub in group B and 


0 for sub in group A 


 







Specification of 2nd level Covariates -> 


 2nd Level Subject Effects 


  


 


 


 


 


 


 


 


 


 


 


 


*Note: These 2nd Level Covariate con be specified anytime, everything else in Setup 


                              must be done prior to Denoising  







SETUP 


   Options: Defines additional analysis options and save options 


 Planned analyses: ROI-to-ROI, Seed-to-Voxel, Voxel-to-Voxel,  


 Dynamic FC 


 Spatial resolution: voxel size for analyses (e.g. 2mm isotropic) 


 Analysis mask: brainmask.nii or implicit mask (SPM subject-specific mask) 


 Optional output files 


Conn 







SETUP 


Conn 


Optional output files are: 


Confound beta-maps:  these are the estimated regressors 


 associated with each confounding effect during the CompCor method (one volume per 


 confounding effect per subject per session); 


Confound-corrected time-series’, BOLD timeseries volumes after CompCor  


removal of confounding effects and   BPF;  


First Level r, p, FDR maps 


ROI extraction rex maps 







SETUP 


• When finished defining the experiment data press Done 


  This will import the functional data, it will also perform normalization & 


segmentation of the structural data in order to define gray matter/ white 


matter/ CSF regions of interest if these have not been already defined. 


Last it will extract the ROIs time-series (performing PCA on the within-


ROI activations when appropriate).  


  This process could take between 5-10 minutes per subject.  


  After this process is finished come back to Setup to inspect the 


resulting ROIs for possible inconsistencies.  


• a conn_*.mat file and a folder of the same name will be created for 


the project.  


• Save / “Save as” button will save the setup configurations in a .mat 


file, which can be loaded later (Load button). 


• The .mat file will be updated each time the “Done” button is 


pressed 


Conn 







Steps 


Step 1:  Setup 


Step 2: Denoising 


Step 3: Analyze and view 1st level results 


Step 4: Define contrasts and view 2nd  level results. 







DENOISING 


Define, explore, and remove possible confounds.  


Any global signal that simultaneously affects otherwise unrelated areas 


(e.g. physiological noise, subject movement) can act as a confound in 


functional connectivity analyses.  
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DENOISING 


Define possible confounds:  


By default the system will utilize white matter and CSF BOLD time-series (5 


dimensions each), as well as any previously-defined within-subject 


covariate (realignment parameters) together with their first-order 


derivatives, and the main condition effects (blocks convolved with hrf) as 


possible confounds. 
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DENOISING 


Define possible confounds:  


• User can define at this step these or other possible confounds, and 


inspect, for each subject and session, the contribution of each confound to 


the BOLD response (displayed as percentage BOLD variance explained) 


• Threshold in the preview window represents r-square values  
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Effects of noise reduction on  


correlation distribution 
 







DENOISING 


Define possible confounds:  


•  


Conn 


User can visualize the shift of distribution of correlations coefficients pre/post denoising  







DENOISING 


Define possible confounds:  


•The user can also define a band-pass filter at this stage to further reduce 


the effect of possible confounds or to limit the subsequent connectivity 


analyses to a given frequency window of interest 


•To see a description of an input field, point cursor to the field.  
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DENOISING 


Define possible confounds:  


•The user can also define a additional steps (detrending/despiking) 


•To see a description of an input field, point cursor to the field.  
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DENOISING 


Define possible confounds:  


•Last the user can choose After Regression or Simultaneous 


•To see a description of an input field, point cursor to the field.  
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Reg BP vs Simultaneous 


• 'RegBP' (the default setting in CONN)  


 


• 'RegBP'  vs 'Simult‘:   Simult allows fitting the regressor effects specifically 


over the frequency of interest (i.e. the effects are assumed to be potentially 


different within the frequency of interest as opposed to outside of the 


frequency of interest, while RegBP assumes that the effects are 


independent of frequency).  


 


• The "independence of frequency" assumption is reasonable (and specially 


appropriate for regressors such as the ART-generated outlier regressors, 


which are meant to identify individual scans and therefore span the entire 


frequency range) so I expect RegBP to produce a more accurate 


characterization and removal of these effects.  
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When finished defining/exploring the effect of confounds press 


Done. This will remove the effects of the defined confounds on all 


brain voxels and regions of interest. 


This process could take ½ minute per subject.  


After this process is finished go to the Analyses section 
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Steps 


Step 1:  Setup 


Step 2: Denoising and explore confounds 


Step 3: Analyze and view 1st level results 


Step 4: Define contrasts and view 2nd  level results. 







ANALYSES 


Define and initially explore the functional connectivity of different sources. 
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ANALYSES 


Define sources of interest:  


In this step the user defines the sources (ROIs) for the functional 


connectivity analyses. Each source can be defined by a single time-series, 


or it can include several time-series (several dimensions from a single ROI, 


or first- or higher-order derivatives of the above). The user can choose 1 or 


multiple frequency bands. 
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ANALYSES 


Define Analysis Option:  Functional connectivity (weighted GLM),  


Task modulation effects (PPI), Temporal modulation effects 


(Dynamic FC) 
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ANALYSES 


Define Analysis Option:  Functional connectivity analyses can be 


performed based on regression (beta values) or correlation (Fisher 


transformed) measures. In addition when multiple sources are used one 


can define whether the analyses should focus on bivariate or semipartial 


correlation measures (or bivariate or multivariate regression) 
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Analysis Options in Conn 
•  


 


• Use Correlation (bivariate) to study the pairwise connectivity between every 


voxel of the brain and each source ROI separately (effect sizes represent 


correlation coefficients)  


 


Use Correlation (semipartial) to study the connectivity that is unique to each 


ROI (that is not mediated by connectivity from the other ROIs) 


 


•  


Use Regression (bivariate) to study bivarate regression models predicting each 


voxel BOLD signal in terms of the BOLD signal from each of the ROIs separately 


(effect sizes represent % changes in BOLD activity at each voxel associated 


with a 1% change of BOLD activity in the source ROI) 


 


• Use Regression (multivariate) to study multivariate models predicting each voxel 


BOLD signal in terms of the BOLD signal from all of the ROIs simultaneously 







ANALYSES 


Within-condition weights determines how the different scans within each 


condition should be weighted when estimating connectivity measures. None 


weights all scans equally, hrf weights them with a block-convolved hrf 


function (incorporating expected hemodynamic delays), and hanning 


weights them using a hanning window (selecting the scans at the center of 


each block in order to minimize possible border effects) 
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ANALYSES 


•At any time the resulting connectivity maps can be inspected for each 


subject/condition in the preview window (Analyses here are performed in 


real-time ). 


•Threshold represents correlation coefficients, or beta values for regression.  
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ANALYSES 


When finished defining/exploring the connectivity analyses press Done. 


This will perform the defined analyses for all subjects and allow the user to 


explore second-level (between subject) results. 


First-level results are also exported as .nii volumes (one per 


Subject/Condition/Source combination) in the results/firstlevel folder 


This process could take 1 minute per source (depending on number of 


subjects in the study). 
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Steps 


Step 1:  Setup 


Step 2: Denoising and explore confounds 


Step 3: Analyze and view 1st level results 


Step 4: Define contrasts and view 2nd  level results. 







RESULTS 


Define and explore contrasts of interest and second-level results 
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RESULTS 


Explore second-level results:  


Functional connectivity measures are tested at the second-level (between-


subject) using random-effect analyses. The results display shows effect 


sizes (measures defined in the previous step; e.g. bivariate correlation), 


which can be thresholded using an (uncorrected) false-positive threshold 


(p-values).  
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RESULTS 


Explore second-level results:  


Source(s) connectivity can be tested separately simply selecting the 


corresponding ROI(s) in the menu 


(note: when sources were defined by multiple time-series, source names 


will follow the convention ROI_DimensionNumber_DerivativeOrder) 
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RESULTS 


Explore second-level results:  


Multiple ROIs/sources can be selected simultaneously in order to aggregate 


or compare the connectivity results across several ROIs (e.g. to compare 


the connectivity between LLP & RLP select both sources and enter [1,-1] in 


the ‘between-sources contrast’ field) 


Conn 
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Between Subjects Contrast 
 


 


“Between-subjects contrast”: in the “Subjects” list will appear  


 all of the defined second-level effects 


 (e.g. subject groups, or subject covariates such as a behavioral 


 measures). 


 


Selecting multiple of these effects will create a second-level 


GLM that will include only the selected effects.  


 


Between-subjects contrast can then be used to define what 


aspect 


 of this second-level model one wishes to analyze  


 


 


 


 


 


 


 







RESULTS 


Explore second-level results:  


Selecting multiple second-level effects in the Subject effects list and 


defining Between-subjects contrast can be used to test more complex 


second-level models (e.g. regression analyses for age-related connectivity 


changes) 
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RESULTS 


Explore second-level results:  


ROI-ROI 
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RESULTS 


Explore second-level results:  


ROI-ROI Results Explorer 
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RESULTS 


Explore second-level results:  


ROI-ROI Results Explorer: Connectome Display 
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RESULTS 


Explore second-level results:  


ROI-ROI Results Explorer: Connectome Display with Brains 
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RESULTS 


Explore second-level results:  


ROI-ROI Results Explorer: Axial Display 
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RESULTS 


Explore second-level results:  


ROI-ROI Results Explorer: Axial Display 3D 
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RESULTS 


Explore second-level results:  


ROI-ROI Results Explorer: Axial Display - Example 


Conn 


Beaty et al., Scientific Reports 2015 







RESULTS 


Explore second-level results:  


ROI-ROI Results Explorer: Graph Metrics 
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RESULTS 


Explore second-level results:  


ROI-ROI Results Explorer: Graph Metrics 
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Network Node Selection 


Adjacency Matrix Threshold 







Graph Output 







RESULTS 


Explore second-level results:  


ROI-ROI Results Explorer: Graph Metrics Examples  
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Beaty et al., Scientific Reports 2015 







Negative Associationg between IQ and normalized path length 


RESULTS 


Explore second-level results:  


ROI-ROI Results Explorer: Graph Metrics Examples  







RESULTS 


Explore second-level results:  


Seed-Voxel  
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RESULTS 


Explore second-level results:  


Seed-Voxel: Explorer  
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RESULTS 


Explore second-level results:  


Seed-Voxel Explorer, thresholds, one sided pos/neg/ two sided 
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RESULTS 


Explore second-level results:  


Seed-Voxel Explorer, Anatomical Locations of Significant Clusters 
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Atlas 
The current atlas being used in CONN for the anatomical locations is the one in 


/rois/atlas.nii. This atlas includes cortical and subcortical ROIs from the FSL 


Harvard-Oxford atlas, as well as cerebellar ROIs from the AAL Atlas.  


 


You can find more info about how this atlas was generated in /rois/atlas.info.  Users 


can change the atlas that will be used for this anatomical labeling of CONN 


displays by going to the Tools.GuiSettings menu and clicking on the 'background 


reference atlas' button (e.g. you can revert that back to our previous BA atlas in the 


conn/utils/otherrois/ folder) 


  







RESULTS 


Explore second-level results:  


Seed-Voxel Explorer: Display Options: Surface; Volume; Slice; SPM 
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RESULTS 


Explore second-level results:  


Seed-Voxel Explorer: Display Options: Surface; Volume; Slice; SPM 
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RESULTS 


Explore second-level results:  


Seed-Voxel Explorer: Export Mask 
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RESULTS 


Explore second-level results:  


Seed-Voxel Explorer: Import Values 
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RESULTS 


Explore second-level results:  


Seed-Voxel Explorer: Import Values 
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Or other clusters of interest 


(select mask.img) 


Or Connectivity Values 


(select SPM.mat) 







RESULTS 


Explore second-level results:  


Import Values -> Tools -> Calculator 
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RESULTS 


Explore second-level results:  


Seed-Voxel Explorer: Display Values 
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RESULTS 


Explore second-level results:  


Seed-Voxel Explorer: Display Values 
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voxel-to-voxel connectivity 


Analyzing the entire matrix of voxel-to-voxel correlations (entire connectome) 


has the potential to address issues of functional connectivity without being 


limited to a priori seeds/ROIs (e.g. what aspects of the functional connectivity 


between brain areas change with age) 


RESULTS 
Conn 







voxel-to-voxel connectivity 


Analyzing the entire matrix of voxel-to-voxel correlations (entire connectome) 


has the potential to address issues of functional connectivity without being 


limited to a priori seeds/ROIs (e.g. what aspects of the functional connectivity 


between brain areas change with age) 


Problem: Huge multiple comparisons issues. N=200.000 voxels (2mm isotropic 


voxels). Voxel-to-voxel correlation matrix contains 199.000.000.000 


correlations. Multiple comparison correction results in very low sensitivity  


voxels 


v
o


x
e
ls


 


Correlation between 


area A and area B 
A 


B 


RESULTS 
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voxel-to-voxel connectivity 


Several approaches have been proposed 


Functional connectivity indexes. Focus on specific aspects of the functional 


connectivity between each voxel and the rest of the brain 


Integrated Local Correlation (ILC, Deshpande et al. 2007). Average 


connectivity between a voxel and its neighbors (one number per voxel) 


Radial Correlation Contrast (RCC, Goelman, 2004). Spatial asymmetry of the 


local connectivity pattern between a voxel and its neighbors (three numbers per 


voxel) 


Intrinsic Connectivity Contrast (ICC, Martuzzi et al. 2011). Average squared 


connectivity between a voxel and the rest of the brain (one number per voxel) 


voxels 


v
o
x
e
ls


 


Correlation between area  


A and the rest of the brain 


Instead of this whole 


pattern of functional 


connectivity (200.000 


numbers), consider 


only some aspect of 


this pattern 


(characterized by a few 


numbers) 


A 
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voxel-to-voxel connectivity 


A natural extension of these approaches uses a data-driven approach (PCA) 


to determine a low dimensional characterization of the pattern of connectivity 


between each voxel and the rest of the brain 


Connectome-MVPA (Nieto-Castanon et al. in preparation). Multivariate pattern 


analyses of the functional connectivity pattern between each voxel and the rest 


of the brain 


voxels 


v
o
x
e
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Correlation between area  


A and the rest of the brain 


Instead of this whole 


pattern of functional 


connectivity (200.000 


numbers), consider a data-


driven low dimensional 


characterization 


(characterized by a few 


numbers) 


A 
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Voxel-to-Voxel analyses 


MVPA (multivoxel pattern analyses) 
Feature of interest: Connectivity pattern (abstract multivariate representation) 
Omnibus test (exactly equivalent of seed-level F-test in ROI-to-ROI analyses; 
Similar to Shehzad et al. CWA) 


PCA 


PCA: Principal Component 
Decomposition of variability in seed-
to-voxel connectivity patterns across 
subjects and conditions. Keep N 
strongest components (disregards 
average) 







voxel-to-voxel connectivity: MVPA: Conn Examples  


RESULTS 


Beaty et al., Scientific Reports 2015 


Figure 2.  MVPA-based brain regions predicting clinical response in SAD to CBT.  


Empirically-defined seed regions (left). Clusters in red (right) identify brain regions that 


 predicted clinical outcome as a function of temporal correlations with the seed regions. 


  Whitfield-Gabrieli et al., Molecular Psychiatry, In Press  







 







In order to form white matter ROIs, the white matter partial 


volume maps are thresholded at a partial volume fraction 


of 0.99 and then eroded by one voxel in each direction to 


further minimize partial voluming vwith gray matter. 


 


CSF voxels were determined by first thresholding the CSF 


partial volume maps at 0.99 and then applying a three 


dimensional nearest neighbor criteria to minimize multiple 


tissue partial voluming.  


White Matter and CSF Erosion 







List of Sources: 


Results/firstlevel/Analysis_01 







White Matter and CSF Erosion 







 Atlases 


There are two formats of the associated .txt files that can be entered to conn: 


 


1)  [ROI_label]: enter in order all of the labels in the atlas (the one in the first 


row of the .txt file will correspond to the areas in the .nii file labeled as '1', the 


label in the second row will correspond to the areas labeled as '2', etc.)  


 


2) [ROI_number ROI_label]:  enter pairs of numbers/labels (separated by a 


whitespace or a tab) and, for each pair, conn will associate the areas in the .nii 


file labeled as 'ROI_number' value with the associated  'ROI_label' string.  


 


In addition you can also use (instead of a .txt file) a .csv file (comma-separated 


file) or .xls file (excel format) using the same convention as the case (2) above 


(two columns, the first with ROI numbers and the second with ROI labels).  


 


Note: you can also find the AAL atlas (relabeled to this format) in the standard 


distribution of conn under the directory conn/utils/otherrois/ (the files named 


aal.nii and aal.txt) 


 







“ROI” Free Surfer 


• To be able to use the FreeSurfer parcellation file (e.g. 


aparc+aseg.nii) in the toolbox we’ll need to locate the 


appropriate color table file from Freesurfer 


(FreeSurferColorLUT.txt) and copy and rename this file 


to the same 


 


• Name as the .nii file (but with the .txt extension, e.g., 


aparc+aseg.txt).  Then the .nii file can be used as the 


standard ROI files in the toolbox and all of the ROIs and 


labels are imported. 


•   








Basic fMRI Design and Analysis 
 


 


Preprocessing 
 







fMRI Preprocessing 


• Slice timing correction 


• Geometric distortion correction 


• Head motion correction 


• Temporal filtering 


• Intensity normalization 


• Spatial filtering 







fMRI Preprocessing 


• Slice timing correction 


• Geometric distortion correction 


• Head motion correction 


• Temporal filtering 


• Intensity normalization 


• Spatial filtering 







Slice timing 


correction Smoothing 


Normalization 


General linear model 


Image 


time series 


Parameter estimates 


Design matrix 


Template 


Kernel 


Field map 


Realignment 


FIL Methods Group 


Outlier 


Detection 







EPI Data Are Acquired Serially 







descending 


EPI Data Are Acquired Serially 







interleaved 


descending 


EPI Data Are Acquired Serially 







interleaved 


descending 


EPI Data Are Acquired Serially 







Two Approaches to Slice Timing 


Correction 


• Addition of temporal 


basis functions to the 


first-level statistical 


model 
 


• Correction using 


temporal interpolation 


? 







Slice Timing Correction 


Time 


S
lic
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TR 







Slice Timing Correction 


Time 


S
lic


e
 


reference 


slice 


interpolation 







Sladky et al., Neuroimage (2011) 


Slice Time Correction Improves Sensitivity Using 


a Visuomotor Task  







  What is the best time to do 


slice timing correction? 


Slice timing correction can be done either before or after 
realignment, depending on the amount of head motion. 


Field map 


Realignment 


Realignment 







Slice Timing 


•Siemens system 


•For interleaved acquisition 


• If odd number of slices: 


– 1,3,5,7,…..2,4,6,8…. 


If even number of slices: 


 2,4,6,….24,1,3,5,7…23 E.g. [2:2:24 1:2:23] 


Acquisition is from inferior -> superior 







fMRI Preprocessing 


• Slice timing correction 


• Geometric distortion correction 


• Head motion correction 


• Temporal filtering 


• Intensity normalization 


• Spatial normalization 


• Spatial filtering 







Slice timing 


correction Smoothing 


Normalization 


General linear model 


Image 


time series 


Parameter estimates 


Design matrix 


Template 


Kernel 


Field map 


Realignment 


FIL Methods Group 


Outlier 


Detection 







Signal Dropout and Geometric Distortion 







Jezzard and Balaban, MRM (1995) 







Original EPI 


Corrected EPI 







fMRI Preprocessing 


• Slice timing correction 


• Geometric distortion correction 


• Head motion correction 


• Temporal filtering 


• Intensity normalization 


• Spatial normalization 


• Spatial filtering 







Head Motion in fMRI 


• The goal is to compare brain locations across 


time 


• Subjects move relative to the recording system 


• Individual voxel time series are affected by this 


motion 


• Motion effects on signal amplitude are non-


linear and complex 


• Motion therefore inflates the residual variance 


and reduces detection sensitivity 


• Task correlated motion is particularly 


problematic 







Head Motion Can Cause Partial 


Volume and Spin History Effects 


50% 







100% 


Head Motion Can Cause Partial 


Volume and Spin History Effects 







50% 


Head Motion Can Cause Partial 


Volume and Spin History Effects 







0% 


Head Motion Can Cause Partial 


Volume and Spin History Effects 







50% 


Head Motion Can Cause Partial 


Volume and Spin History Effects 







Whitfield-Gabrieli 


Head Motion Can Cause Partial 


Volume and Spin History Effects 







Head Motion Detection 


•compute time series center-of-intensity 


•compute variance map of time series 


• single-slice animation 







Head Motion Detection 


•compute time series center-of-intensity 







Head Motion Detection 


•compute time series center-of-intensity 


•compute variance map of time series 


• single-slice animation 











Mitigation of Head Motion Effects 


• Prevention 


• Prospective correction 


• Realignment 


• Covariate correction with head 
motion estimates 


• Movement by distortion effect 
correction with fieldmaps 


• Covariate correction with outlier 
identification 


 


 


 







Mitigation of Head Motion Effects 


• Prevention 


• Prospective correction 


• Realignment 


• Covariate correction with head 
motion estimates 


• Movement by distortion effect 
correction with fieldmaps 


• Covariate correction with outlier 
identification 


 


 


 











Mitigation of Head Motion Effects 


• Prevention 


• Prospective correction 


• Realignment 


• Covariate correction with head 
motion estimates 


• Movement by distortion effect 
correction with fieldmaps 


• Covariate correction with outlier 
identification 


 


 


 







Prospective Motion Correction 


time 


? 


Prospective motion correction makes predictions that 


may be dependent on outdated information. 







“We drive into the future using only our 


rearview mirror.”  - Marshall McLuhan  







Mitigation of Head Motion Effects 


• Prevention 


• Prospective correction 


• Realignment 


• Covariate correction with head 
motion estimates 


• Movement by distortion effect 
correction with fieldmaps 


• Covariate correction with outlier 
identification 


 


 


 







Slice timing 


correction Smoothing 


Normalization 


General linear model 


Image 


time series 


Parameter estimates 


Design matrix 


Template 


Kernel 


Field map 


Realignment 


FIL Methods Group 


Outlier 


Detection 







Spatial Realignment 


 


•Realignment (of same-modality images from 


same subject) involves two stages: 


–  Registration - determining the 6 parameters that 


describe the rigid body transformation between 


each image and a reference image 


–  Reslicing - re-sampling each image according 


to the determined transformation parameters 


Henson 







Spatial Realignment 


Henson 


Yaw 


 


 


Roll 


 


 


Translation 


 
 


Rotation 


 
 


X 


 


 


Y 


 


 


Z 


 


 


Pitch 


 


 







Spatial Realignment: Registration 


• Determine the rigid body transformation that minimises the sum of 


squared difference between images 


• Rigid body transformation is defined by: 


– 3 translations - in X, Y & Z directions 


– 3 rotations - about X, Y & Z axes 


• Operations can be represented as affine  


transformation matrices:  


x1 = m1,1x0 + m1,2y0 + m1,3z0 + m1,4 


y1 = m2,1x0 + m2,2y0 + m2,3z0 + m2,4 


z1 = m3,1x0 + m3,2y0 + m3,3z0 + m3,4 


Squared Error 


Henson 







•Iterative procedure 


(Gauss-Newton 


ascent) 


•Additional scaling 


parameter 


•Nx6 matrix of 


realignment 


parameters written to 


file (N is number of 


scans) 


•Orientation matrices 


in header of image 


file (data not changed 


until reslicing)  


 


Spatial Realignment: Registration 


Henson 







•Application of registration parameters 
involves re-sampling the image to create 
new voxels by interpolation from existing 
voxels 


•Interpolation can be nearest neighbour (0-
order), tri-linear (1st-order), (windowed) 
fourier/sinc, or nth-order “b-splines” 


d1 d2


d3


d4


v1


v4


v2


v3


Nearest Neighbour 


Linear 


Full sinc (no alias)  


Windowed 


sinc 


Henson 


Spatial Realignment: Reslicing 







before 


correction 


after 


correction 







Effects of Realignment on 


Statistical Maps 


before 


after 







Residual Error After Realignment 


Even after realignment a considerable amount of the 


variance can be accounted for by movement 


Causes: 


1. Movement between and within slice 


acquisition 


2. Interpolation artifacts due to resampling 


3. Non-linear distortions and drop-out due to 


inhomogeneity of the magnetic field 
 







Mitigation of Head Motion Effects 


• Prevention 


• Prospective correction 


• Realignment 


• Covariate correction with head 
motion estimates 


• Movement by distortion effect 
correction with fieldmaps 


• Covariate correction with outlier 
identification 


 


 


 











Realignment with Movement 


Covariates 


 Friston et al., Movement-related effects in fMRI 


time series. Magn. Reson. Med. 35:346-355 


(1996) 


 - estimate motion parameters 


 - use estimates as confounds in the 


statistical model 


 







Slice timing 


correction Smoothing 


Normalization 


General linear model 


Image 


time series 


Parameter estimates 


Design matrix 


Template 


Kernel 


Field map 


Realignment 


FIL Methods Group 


Outlier 


Detection 







tmax=13.38 


No correction 


tmax=5.06 


Covariate 


correction 


tmax=9.57 


Unwarp 


correction 


Movement Correction 


FIL Methods Group 







Mitigation of Head Motion Effects 


• Prevention 


• Prospective correction 


• Realignment 


• Covariate correction with head 
motion estimates 


• Movement by distortion effect 
correction with fieldmaps 


• Covariate correction with outlier 
identification 


 


 


 







Original EPI 


Corrected EPI 







Movement-by-Distortion Interactions 


Time dependent fMRI signal changes are 


dependent upon: 


•position of the object in the scanner 


  geometric distortion 


  B0 field effects 


  slice select gradient edge effects 


•history of the position of the object 


  spin history effects 







Movement-by-Distortion Interactions 


FIL Methods Group 







tmax=13.38 


No correction 


tmax=5.06 


Covariate 


correction 


tmax=9.57 


Unwarp 


correction 


Movement Correction 


FIL Methods Group 







Mitigation of Head Motion Effects 


• Prevention 


• Prospective correction 


• Realignment 


• Covariate correction with head 
motion estimates 


• Movement by distortion effect 
correction with fieldmaps 


• Covariate correction with outlier 
identification 


 


 


 







Outlier Identification 


Translation 


Rotation 


Global 


mean 


Global 


Std. Dev. 







Outliers 


Thresholds 


MOTION 


OUTLIERS 


INTENSITY 


OUTLIERS 


COMBINED 


OUTLIERS 


Translation 


Rotation 


Global 


mean 


Std. Dev. 







Slice timing 


correction Smoothing 


Normalization 


General linear model 


Image 


time series 


Parameter estimates 


Design matrix 


Template 


Kernel 


Field map 


Realignment 


FIL Methods Group 


Outlier 


Detection 







fMRI Preprocessing 


• Slice timing correction 


• Geometric distortion correction 


• Head motion correction 


• Temporal filtering 


• Intensity normalization 


• Spatial normalization 


• Spatial filtering 







Temporal Filtering 


Time 







Lund et al., Neuroimage (2006) 


Respiration Modulates BOLD Contrast 







Lund et al., Neuroimage (2006) 


Cardiac Motion Modulates BOLD Contrast 







Birn et al., Neuroimage (2006) 


Respiration 


Modulates BOLD 


Contrast Time 


Series 







Birn et al., Neuroimage (2006) 


Respiration Modulates BOLD Contrast 







Birn et al., Neuroimage (2006) 


Respiration Modulates BOLD Contrast at Rest 







Birn et al., Neuroimage (2006) 


Respiration Modulates BOLD Contrast at Rest 







Cardiovascular and Respiratory Artifacts 


 


 Poncelet et al., Brain parenchyma motion: measurement with 


cine echo-planar MR imaging. Radiology 185:645-651 


(1992). 


 Biswal et al., Reduction of physiological fluctuations in fMRI 


using digital filters. Magn. Reson. Med. 35:107-113 (1996). 


 Hu et al., Retrospective estimation and correction of 


physiological fluctuation in functional MRI. Magn. Reson. 


Med. 34:201-212 (1995). 







Slice timing 
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Regressors (m) 


High-Pass Filter 


Time 


(n) 


Regressors (m) 


Task Effect 







fMRI Preprocessing 


• Slice timing correction 


• Geometric distortion correction 


• Head motion correction 


• Temporal filtering 


• Intensity normalization 


• Spatial filtering 











Global Intensity Variation  


•machine instability 


•global blood flow changes 


– arousal 


– respiratory effects 


– drug effects 







Global Intensity Correction  


•Proportional global intensity 


normalization 


•ANCOVA global intensity 


normalization 







No Global 


Intensity Correction 


 


 


 


Proportional Global 


Intensity Correction  


 


 


 


ANCOVA Global 


Intensity Correction  







Global Intensity Correction  


•  Global intensity normalization per 


time point 


– PET 


•Global intensity normalization per 


session 


– fMRI 
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Global Intensity Normalization  
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Global Intensity Normalization  


Intensity normalization per session 
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fMRI Preprocessing 


• Slice timing correction 


• Geometric distortion correction 


• Head motion correction 


• Temporal filtering 


• Intensity normalization 


• Spatial filtering 







Spatial filtering 







Slice timing 
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Spatial Filtering 


Time 







Gaussian Kernel 


amplitude 


1 


0 


space 


FWHM 







Spatial Filtering 


Slice from 


nonsmoothed noise 


volume 


voxel size 1mm3 


Same slice after 8mm 


isotropic smoothing 







How much smoothing? 


• Noise reduction 


• Spatial normalization compensation 


• Matched filter theorem 







fMRI Preprocessing 


• Slice timing correction 


• Geometric distortion correction 


• Head motion correction 


• Temporal filtering 


• Intensity normalization 


• Spatial filtering 







Realignment Smoothing 


Normalization 


General linear model 


Statistical parametric map (SPM) Image 


time series 


Parameter estimates 


Design matrix 


Template 


Kernel 


Gaussian  


field theory 


p <0.05 


Statistical 


inference 


FIL Methods Group 









